当前位置: 首页>>代码示例>>C++>>正文


C++ Image::depth方法代码示例

本文整理汇总了C++中image::Image::depth方法的典型用法代码示例。如果您正苦于以下问题:C++ Image::depth方法的具体用法?C++ Image::depth怎么用?C++ Image::depth使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在image::Image的用法示例。


在下文中一共展示了Image::depth方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: compute

	double Zncc::compute(image::Image const& im1, image::Image const& im2, float const* weightMatrix)
	{
		JFR_PRECOND(im1.depth() == im2.depth(), "The depth of both images is different");
		switch(im1.depth())
		{
// 			case CV_1U:
// 				if (weightMatrix == NULL)
// 					return computeTpl<CV_1U, bool,bool,0,1,true,false>(im1,im2);
// 				else
// 					return computeTpl<CV_1U, bool,bool,0,1,true,true>(im1,im2,weightMatrix);
			case CV_8U:
				if (weightMatrix == NULL)
					return computeTpl<CV_8U, uint8_t,uint8_t,0,255,true,false>(im1,im2);
				else
					return computeTpl<CV_8U, uint8_t,uint8_t,0,255,true,true>(im1,im2,weightMatrix);
			case CV_8S:
				if (weightMatrix == NULL)
					return computeTpl<CV_8S, int8_t,int8_t, -128,127,true,false>(im1,im2);
				else
					return computeTpl<CV_8S, int8_t,int8_t, -128,127,true,true>(im1,im2,weightMatrix);
			case CV_16U:
				if (weightMatrix == NULL)
					return computeTpl<CV_16U, uint16_t,uint16_t, 0,65535,true,false>(im1,im2);
				else
					return computeTpl<CV_16U, uint16_t,uint16_t, 0,65535,true,true>(im1,im2,weightMatrix);
			case CV_16S:
				if (weightMatrix == NULL)
					return computeTpl<CV_16S, int16_t,int16_t, -32768,32767,true,false>(im1,im2);
				else
					return computeTpl<CV_16S, int16_t,int16_t, -32768,32767,true,true>(im1,im2,weightMatrix);
			case CV_32F:
				if (weightMatrix == NULL) // bool and no borne because cannot use a float as a template parameter, and anyway would be useless here
					return computeTpl<CV_32F, float,bool, 0,0,false,false>(im1,im2);
				else
					return computeTpl<CV_32F, float,bool, 0,0,false,true>(im1,im2,weightMatrix);
			case CV_64F:
				if (weightMatrix == NULL) // bool and no borne because cannot use a float as a template parameter, and anyway would be useless here
					return computeTpl<CV_64F, double,bool, 0,0,false,false>(im1,im2);
				else
					return computeTpl<CV_64F, double,bool, 0,0,false,true>(im1,im2,weightMatrix);
			default:
				JFR_PRECOND(false, "Unknown image depth");
				return FP_NAN;
		}
	}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:45,代码来源:zncc.cpp

示例2:

	double Zncc::compute8noborne(image::Image const& im1, image::Image const& im2)
	{
		JFR_PRECOND(im1.depth() == im2.depth(), "The depth of both images is different");
		JFR_PRECOND(im1.depth() == CV_8U, "The depth of images must be CV_8U");
		return computeTpl<CV_8U, uint8_t,uint8_t,0,255,false,false>(im1,im2);
	}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:6,代码来源:zncc.cpp

示例3: computeTpl

	double Zncc::computeTpl(image::Image const& im1_, image::Image const& im2_, float const* weightMatrix)
	{
		// preconds
		JFR_PRECOND( im1_.depth() == depth, "Image 1 depth is different from the template parameter" );
		JFR_PRECOND( im2_.depth() == depth, "Image 2 depth is different from the template parameter" );
		JFR_PRECOND( im1_.channels() == im2_.channels(), "The channels number of both images are different" );
		JFR_PRECOND( !useWeightMatrix || weightMatrix, "Template parameter tells to use weightMatrix but no one is given" );
		
		// adjust ROIs to match size, assuming that it is reduced when set out of the image
		// FIXME weightMatrix should be a cv::Mat in order to have a ROI too, and to adjust it
		cv::Size size1; cv::Rect roi1 = im1_.getROI(size1);
		cv::Size size2; cv::Rect roi2 = im2_.getROI(size2);
		int dw = roi1.width - roi2.width, dh = roi1.height - roi2.height;
		if (dw != 0)
		{
			cv::Rect &roiA = (dw<0 ? roi1 : roi2), &roiB = (dw<0 ? roi2 : roi1);
			cv::Size &sizeA = (dw<0 ? size1 : size2);
			if (roiA.x == 0) { roiB.x += dw; roiB.width -= dw; } else
			if (roiA.x+roiA.width == sizeA.width) { roiB.width -= dw; }
		}
		if (dh != 0)
		{
			cv::Rect &roiA = (dh<0 ? roi1 : roi2), &roiB = (dh<0 ? roi2 : roi1);
			cv::Size &sizeA = (dh<0 ? size1 : size2);
			if (roiA.y == 0) { roiB.y += dh; roiB.height -= dh; } else
			if (roiA.y+roiA.height == sizeA.height) { roiB.height -= dh; }
		}
		image::Image im1(im1_); im1.setROI(roi1);
		image::Image im2(im2_); im2.setROI(roi2);

		// some variables initialization
		int height = im1.height();
		int width = im1.width();
		int step1 = im1.step1() - width;
		int step2 = im2.step1() - width;
		
		double mean1 = 0., mean2 = 0.;
		double sigma1 = 0., sigma2 = 0., sigma12 = 0.;
		double zncc_sum = 0.;
		double zncc_count = 0.;
		double zncc_total = 0.;
		
		worktype const* im1ptr = reinterpret_cast<worktype const*>(im1.data());
		worktype const* im2ptr = reinterpret_cast<worktype const*>(im2.data());
		
		float const* wptr = weightMatrix;
		double w;
		
		// start the loops
		for(int i = 0; i < height; ++i) 
		{
			for(int j = 0; j < width; ++j) 
			{
				worktype im1v = *(im1ptr++);
				worktype im2v = *(im2ptr++);
				if (useWeightMatrix) w = *(wptr++); else w = 1;
				if (useBornes) zncc_total += w;
				
//std::cout << "will correl ? " << useBornes << ", " << (int)im1v << ", " << (int)im2v << std::endl;
				if (!useBornes || (im1v != borneinf && im1v != bornesup && im2v != borneinf && im2v != bornesup))
				{
//std::cout << "correl one pixel" << std::endl;
#if 0
					double im1vw, im2vw;
					if (useWeightMatrix)
						{ im1vw = im1v * w; im2vw = im2v * w; } else
						{ im1vw = im1v;     im2vw = im2v;     }
					zncc_count += w;
					mean1 += im1vw;
					mean2 += im2vw;
					sigma1 += im1v * im1vw;
					sigma2 += im2v * im2vw;
					zncc_sum += im1v * im2vw;
#else
					zncc_count += w;
					mean1 += im1v * w;
					mean2 += im2v * w;
					sigma1 += im1v * im1v * w;
					sigma2 += im2v * im2v * w;
					zncc_sum += im1v * im2v * w;
#endif
				}
			}
			im1ptr += step1;
			im2ptr += step2;
		}
		
		if (useBornes) if (zncc_count / zncc_total < 0.75)
			{ /*std::cout << "zncc failed: " << zncc_count << "," << zncc_total << std::endl;*/ return -3; }
		
		// finish
		mean1 /= zncc_count;
		mean2 /= zncc_count;
		sigma1 = sigma1/zncc_count - mean1*mean1;
		sigma2 = sigma2/zncc_count - mean2*mean2;
		sigma1 = sigma1 > 0.0 ? sqrt(sigma1) : 0.0; // test for numerical rounding errors to avoid nan
		sigma2 = sigma2 > 0.0 ? sqrt(sigma2) : 0.0;
		sigma12 = sigma1*sigma2;
// std::cout << "normal: zncc_sum " << zncc_sum << ", count " << zncc_count << ", mean12 " << mean1*mean2 << ", sigma12 " << sigma1*sigma2 << std::endl;
		zncc_sum = (sigma12 < 1e-6 ? -1 : (zncc_sum/zncc_count - mean1*mean2) / sigma12);
//.........这里部分代码省略.........
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:101,代码来源:zncc.cpp


注:本文中的image::Image::depth方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。