当前位置: 首页>>代码示例>>C++>>正文


C++ Image::Height方法代码示例

本文整理汇总了C++中image::Image::Height方法的典型用法代码示例。如果您正苦于以下问题:C++ Image::Height方法的具体用法?C++ Image::Height怎么用?C++ Image::Height使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在image::Image的用法示例。


在下文中一共展示了Image::Height方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: detector

void FastCornerDetector::detect
(
  const image::Image<unsigned char> & ima,
  std::vector<PointFeature> & regions
)
{
  using FastDetectorCall =
    xy* (*) (const unsigned char *, int, int, int, int, int *);

  FastDetectorCall detector = nullptr;
  if (size_ ==  9) detector =  fast9_detect_nonmax;
  if (size_ == 10) detector = fast10_detect_nonmax;
  if (size_ == 11) detector = fast11_detect_nonmax;
  if (size_ == 12) detector = fast12_detect_nonmax;
  if (!detector)
  {
    std::cout << "Invalid size for FAST detector: " << size_ << std::endl;
    return;
  }

  int num_corners = 0;
  xy* detections = detector(ima.data(),
     ima.Width(), ima.Height(), ima.Width(),
     threshold_, &num_corners);
  regions.clear();
  regions.reserve(num_corners);
  for (int i = 0; i < num_corners; ++i)
  {
    regions.emplace_back(detections[i].x, detections[i].y);
  }
  free( detections );
}
开发者ID:autosquid,项目名称:openMVG,代码行数:32,代码来源:fast_detector.cpp

示例2: Extract

      /**
      * @brief Extract MSER regions
      * @param img Input image
      * @param[out] regions Output regions
      */
      void MSERExtractor::Extract( const image::Image<unsigned char> & img , std::vector<MSERRegion> & regions ) const
      {
        // Compute minimum and maximum region area relative to this image
        const int minRegArea = img.Width() * img.Height() * m_minimum_area;
        const int maxRegArea = img.Width() * img.Height() * m_maximum_area;

        // List of processed pixels (maybe we can use a more efficient structure)
        std::vector<std::vector<bool >> processed;
        processed.resize( img.Width() );
        for (int i = 0; i < img.Width(); ++i )
        {
          processed[ i ].resize( img.Height() );
          std::fill( processed[ i ].begin() , processed[ i ].end() , false );
        }

        // Holds the boundary of given grayscale value (boundary[0] -> pixels in the boundary with 0 grayscale value)
        std::vector<PixelStackElt> boundary[ 256 ];

        // List of regions computed so far (not only valid MSER regions)
        std::vector<MSERRegion *> regionStack;

        // Push en empty region
        regionStack.push_back( new MSERRegion );

        // Start processing from top left pixel
        PixelStackElt cur_pix;
        cur_pix.pix_x = 0;
        cur_pix.pix_y = 0;
        cur_pix.pix_level = img( 0 , 0 );
        cur_pix.edge_index = PIXEL_RIGHT;

        processed[ cur_pix.pix_x ][ cur_pix.pix_y ] = true;

        regionStack.push_back( new MSERRegion( cur_pix.pix_level , cur_pix.pix_x , cur_pix.pix_y ) );

        int priority = 256;

        // Start process
        while (1)
        {
          bool restart = false;

          // Process neighboring to see if there's something to search with lower grayscale level
          for ( PixelNeighborsDirection curDir = cur_pix.edge_index;
                curDir <= PIXEL_BOTTOM_RIGHT;
                curDir = NextDirection( curDir , m_connectivity ) )
          {
            int nx , ny;
            GetNeighbor( cur_pix.pix_x , cur_pix.pix_y , curDir , img.Width() , img.Height() , nx , ny );

            // Pixel was not processed before
            if (ValidPixel( nx , ny , img.Width() , img.Height() ) && ! processed[ nx ][ ny ] )
            {
              const int nLevel = img( ny , nx );
              processed[ nx ][ ny ] = true;

              // Info of the neighboring pixel
              PixelStackElt n_elt;
              n_elt.pix_x = nx;
              n_elt.pix_y = ny;
              n_elt.pix_level = nLevel;
              n_elt.edge_index = PIXEL_RIGHT;

              // Now look from which pixel do we have to continue
              if (nLevel >= cur_pix.pix_level )
              {
                // Continue from the same pixel
                boundary[ nLevel ].push_back( n_elt );

                // Store the lowest value so far
                priority = std::min( nLevel , priority );
              }
              else
              {
                // Go on with the neighboring pixel (go down)
                cur_pix.edge_index = NextDirection( curDir , m_connectivity ); // Next time we have to process the next boundary pixel
                boundary[ cur_pix.pix_level ].push_back( cur_pix );

                // Store the lowest value so far
                priority = std::min( cur_pix.pix_level , priority );

                // Push the next pixel to process
                cur_pix = n_elt;
                restart = true;
                break;
              }
            }
          }
          // Do we have to restart from a new pixel ?
          if (restart )
          {
            // If so it's that because we found a lower grayscale value so let's start a new region
            regionStack.push_back( new MSERRegion( cur_pix.pix_level , cur_pix.pix_x , cur_pix.pix_y ) );
            continue;
          }
//.........这里部分代码省略.........
开发者ID:autosquid,项目名称:openMVG,代码行数:101,代码来源:mser.cpp

示例3: octave_gen

  /**
  @brief Detect regions on the image and compute their attributes (description)
  @param image Image.
  @param regions The detected regions and attributes (the caller must delete the allocated data)
  @param mask 8-bit gray image for keypoint filtering (optional).
     Non-zero values depict the region of interest.
  */
  bool Describe
  (
    const image::Image<unsigned char>& image,
    std::unique_ptr<Regions> &regions,
    const image::Image<unsigned char> * mask = nullptr
  ) override
  {
    const int w = image.Width(), h = image.Height();
    // Convert to float in range [0;1]
    const image::Image<float> If(image.GetMat().cast<float>()/255.0f);

    // compute sift keypoints
    Allocate(regions);

    // Build alias to cached data
    SIFT_Regions * regionsCasted = dynamic_cast<SIFT_Regions*>(regions.get());
    {
      using namespace openMVG::features::sift;
      const int supplementary_images = 3;
      // => in order to ensure each gaussian slice is used in the process 3 extra images are required:
      // +1 for dog computation
      // +2 for 3d discrete extrema definition

      HierarchicalGaussianScaleSpace octave_gen(
        params_.num_octaves_,
        params_.num_scales_,
        (params_.first_octave_ == -1)
        ? GaussianScaleSpaceParams(1.6f/2.0f, 1.0f/2.0f, 0.5f, supplementary_images)
        : GaussianScaleSpaceParams(1.6f, 1.0f, 0.5f, supplementary_images));
      octave_gen.SetImage( If );

      std::vector<Keypoint> keypoints;
      keypoints.reserve(5000);
      Octave octave;
      while ( octave_gen.NextOctave( octave ) )
      {
        std::vector< Keypoint > keys;
        // Find Keypoints
        SIFT_KeypointExtractor keypointDetector(
          params_.peak_threshold_ / octave_gen.NbSlice(),
          params_.edge_threshold_);
        keypointDetector(octave, keys);
        // Find Keypoints orientation and compute their description
        Sift_DescriptorExtractor descriptorExtractor;
        descriptorExtractor(octave, keys);

        // Concatenate the found keypoints
        std::move(keys.begin(), keys.end(), std::back_inserter(keypoints));
      }
      for (const auto & k : keypoints)
      {
        // Feature masking
        if (mask)
        {
          const image::Image<unsigned char> & maskIma = *mask;
          if (maskIma(k.y, k.x) == 0)
            continue;
        }

        Descriptor<unsigned char, 128> descriptor;
        descriptor << (k.descr.cast<unsigned char>());
        {
          regionsCasted->Descriptors().emplace_back(descriptor);
          regionsCasted->Features().emplace_back(k.x, k.y, k.sigma, k.theta);
        }
      }
    }
    return true;
  };
开发者ID:riyueshi,项目名称:openMVG,代码行数:76,代码来源:SIFT_Anatomy_Image_Describer.hpp

示例4: Describe

    /**
    @brief Detect regions on the image and compute their attributes (description)
    @param image Image.
    @param regions The detected regions and attributes (the caller must delete the allocated data)
    @param mask 8-bit gray image for keypoint filtering (optional).
       Non-zero values depict the region of interest.
    */
    bool Describe(const image::Image<unsigned char>& image,
                  std::unique_ptr<Regions> &regions,
                  const image::Image<unsigned char> * mask = NULL)
    {
        const int w = image.Width(), h = image.Height();
        //Convert to float
        const image::Image<float> If(image.GetMat().cast<float>());

        VlSiftFilt *filt = vl_sift_new(w, h,
                                       _params._num_octaves, _params._num_scales, _params._first_octave);
        if (_params._edge_threshold >= 0)
            vl_sift_set_edge_thresh(filt, _params._edge_threshold);
        if (_params._peak_threshold >= 0)
            vl_sift_set_peak_thresh(filt, 255*_params._peak_threshold/_params._num_scales);

        Descriptor<vl_sift_pix, 128> descr;
        Descriptor<unsigned char, 128> descriptor;

        // Process SIFT computation
        vl_sift_process_first_octave(filt, If.data());

        Allocate(regions);

        // Build alias to cached data
        SIFT_Regions * regionsCasted = dynamic_cast<SIFT_Regions*>(regions.get());
        // reserve some memory for faster keypoint saving
        regionsCasted->Features().reserve(2000);
        regionsCasted->Descriptors().reserve(2000);

        while (true) {
            vl_sift_detect(filt);

            VlSiftKeypoint const *keys  = vl_sift_get_keypoints(filt);
            const int nkeys = vl_sift_get_nkeypoints(filt);

            // Update gradient before launching parallel extraction
            vl_sift_update_gradient(filt);

#ifdef OPENMVG_USE_OPENMP
            #pragma omp parallel for private(descr, descriptor)
#endif
            for (int i = 0; i < nkeys; ++i) {

                // Feature masking
                if (mask)
                {
                    const image::Image<unsigned char> & maskIma = *mask;
                    if (maskIma(keys[i].y, keys[i].x) == 0)
                        continue;
                }

                double angles [4] = {0.0, 0.0, 0.0, 0.0};
                int nangles = 1; // by default (1 upright feature)
                if (_bOrientation)
                {   // compute from 1 to 4 orientations
                    nangles = vl_sift_calc_keypoint_orientations(filt, angles, keys+i);
                }

                for (int q=0 ; q < nangles ; ++q) {
                    vl_sift_calc_keypoint_descriptor(filt, &descr[0], keys+i, angles[q]);
                    const SIOPointFeature fp(keys[i].x, keys[i].y,
                                             keys[i].sigma, static_cast<float>(angles[q]));

                    siftDescToUChar(&descr[0], descriptor, _params._root_sift);
#ifdef OPENMVG_USE_OPENMP
                    #pragma omp critical
#endif
                    {
                        regionsCasted->Descriptors().push_back(descriptor);
                        regionsCasted->Features().push_back(fp);
                    }
                }
            }
            if (vl_sift_process_next_octave(filt))
                break; // Last octave
        }
        vl_sift_delete(filt);

        return true;
    };
开发者ID:paulinus,项目名称:openMVG,代码行数:87,代码来源:SIFT_describer.hpp


注:本文中的image::Image::Height方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。