当前位置: 首页>>代码示例>>C++>>正文


C++ image::Image类代码示例

本文整理汇总了C++中image::Image的典型用法代码示例。如果您正苦于以下问题:C++ Image类的具体用法?C++ Image怎么用?C++ Image使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Image类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: detector

void FastCornerDetector::detect
(
  const image::Image<unsigned char> & ima,
  std::vector<PointFeature> & regions
)
{
  using FastDetectorCall =
    xy* (*) (const unsigned char *, int, int, int, int, int *);

  FastDetectorCall detector = nullptr;
  if (size_ ==  9) detector =  fast9_detect_nonmax;
  if (size_ == 10) detector = fast10_detect_nonmax;
  if (size_ == 11) detector = fast11_detect_nonmax;
  if (size_ == 12) detector = fast12_detect_nonmax;
  if (!detector)
  {
    std::cout << "Invalid size for FAST detector: " << size_ << std::endl;
    return;
  }

  int num_corners = 0;
  xy* detections = detector(ima.data(),
     ima.Width(), ima.Height(), ima.Width(),
     threshold_, &num_corners);
  regions.clear();
  regions.reserve(num_corners);
  for (int i = 0; i < num_corners; ++i)
  {
    regions.emplace_back(detections[i].x, detections[i].y);
  }
  free( detections );
}
开发者ID:autosquid,项目名称:openMVG,代码行数:32,代码来源:fast_detector.cpp

示例2: parameters

> void LinearFilterWx1<PixelType>::applyTo(const Image::Image<PixelType> & srcImage,Image::Image<PixelType> & dstImage) const {

	typedef typename PixelType::DataType        PixelDataType;
	typedef typename PixelType::ComputationType PixelComputationType;

	BaseLinearFilterParametersType<PixelDataType,PixelComputationType> parameters(
		getFilterData().getDataView(),
		getXoffset(),
		getYoffset(),
		srcImage.getWidth(),
		getTotalColor()
	);

	Algorithm::AlgorithmWx1<
		SimpleWx1dataOperationBaseAlgorithm<
			BaseLinearFilterAlgorithm<
				PixelDataType,
				PixelComputationType,
				BaseLinearFilterParametersType<PixelDataType,PixelComputationType>,
				Algorithm::BaseOperationTempType<PixelDataType,PixelComputationType>
			>,
			PixelDataType,
			PixelComputationType,
			BaseLinearFilterParametersType<PixelDataType,PixelComputationType>,
			Algorithm::BaseOperationTempType<PixelDataType,PixelComputationType>
		>,
		PixelDataType,
		BaseLinearFilterParametersType<PixelDataType,PixelComputationType>
	>(
		srcImage.getDataView(),
		dstImage.getDataView(),
		parameters
	);

}
开发者ID:Argoday,项目名称:IPL,代码行数:35,代码来源:LinearFilterWx1.cpp

示例3: fillHisto

void GradientsDescriptor::fillHisto( const image::Image& _dx, const image::Image& _dy, double* _histo, const jblas::vec2& _startPoint, const jblas::vec2& _direction, double _lineAngle, int _length, double _coef  )
{
  jblas::vec2 currentPoint = _startPoint + 3.0 * _direction;
  double lastNorm = DBL_MAX;
  for(int i = 0; i < _length; ++i)
//   while(true)
  {
    int ix = int(currentPoint(0));
    int iy = int(currentPoint(1));
    if( not check(ix, _dx.width() - 1) or not check(iy, _dx.height() - 1) ) return;
    int dx = _dx.getPixelValue<short>( ix, iy, 0 );
    int dy = _dy.getPixelValue<short>( ix, iy, 0 );
//     double dx = _dx.getSubPixelValue<short>( ix, iy, 0, JfrImage_INTERP_CUBIC );
//     double dy = _dy.getSubPixelValue<short>( ix, iy, 0, JfrImage_INTERP_CUBIC );
    double norm = sqrt( dx * dx + dy * dy );
//     if( norm > lastNorm) return ;
    double angle = atan2(dy, dx);
//     double diff = cos( angle - _lineAngle);
    double correctedAngle = ( angle - _lineAngle);
//     int idx = int( (m_count) * ( 1.0 + diff) * 0.5);
//     if( idx >= m_count ) idx = m_count - 1;
//     if( idx != 0 and idx != (m_count - 1 ) )
    for(int j = 0; j < m_count; ++j )
    {
//       double lnorm = norm * ( 1.0 - fabs( fpow( -1.0 + 2.0 * j / (m_count-1) - diff ), 2.0) );
//       double lnorm = norm * exp( -pow( -1.0 + 2.0 * j / (m_count-1) - diff, 2.0) );
//       JFR_DEBUG( j << " " << exp( -pow2( cos( M_PI * j / (m_count-1) - 0.5 * correctedAngle ) ) ) );
      double lnorm = norm * _coef * exp( -pow2( cos( M_PI * j / (m_count-1) - 0.5 * correctedAngle ) ) );
      _histo[ j ] += lnorm;
    }
    lastNorm = norm;
    currentPoint += _direction;
  }
}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:34,代码来源:GradientsDescriptor.cpp

示例4: parameters

> void AIL_DLL_EXPORT BoxFilterWx1<PixelType>::applyTo(const Image::Image<PixelType> & srcImage,Image::Image<PixelType> & dstImage) const {

	typedef typename PixelType::DataType        PixelDataType;
	typedef typename PixelType::ComputationType PixelComputationType;

	BoxFilterWx1parametersType<PixelDataType,PixelComputationType> parameters(xOffset,filterWidth,PixelType::ComputationRange::getMinPixel(),PixelComputationType(filterWidth));

	Algorithm::AlgorithmWx1<
		Algorithm::BasicWx1baseAlgorithm<
			BaseBoxFilterAlgorithm<
				PixelDataType,
				PixelComputationType,
				BoxFilterWx1parametersType<PixelDataType,PixelComputationType>,
				Algorithm::BaseOperationTempType<PixelDataType,PixelComputationType>
			>,
			PixelDataType,
			PixelComputationType,
			BoxFilterWx1parametersType<PixelDataType,PixelComputationType>,
			Algorithm::BaseOperationTempType<PixelDataType,PixelComputationType>
		>,
		PixelDataType,
		BoxFilterWx1parametersType<PixelDataType,PixelComputationType>
	>(
		srcImage.getDataView(),
		dstImage.getDataView(),
		parameters
	);

}
开发者ID:Argoday,项目名称:IPL,代码行数:29,代码来源:BoxFilterWx1.cpp

示例5: coloriage

void DirectSegmentsBase::coloriage( double x_1, double y_1, double x_2, double y_2, image::Image& inasegment, int _value)
{
  double xStep = (x_2 - x_1);
  double yStep = (y_2 - y_1);
  double norm_steps = sqrt( xStep * xStep + yStep * yStep );
  xStep /= norm_steps;
  yStep /= norm_steps;
  int max_coloriage = (int)norm_steps +1;
  for( int k = 0; k < max_coloriage; ++k )
  {
    int x = (int)( x_1 + k * xStep );
    int y = (int)( y_1 + k * yStep );
    for( int j = -1; j <= 1; ++j)
    {
      for( int i = -1; i <= 1; ++i)
      {
        if( check( x + i, inasegment.width() - 1 ) and check( y + j, inasegment.height() - 1 ) )
        {
          inasegment.setPixelValue<int>( _value, x+i, y+j, 0 );
        }
      }
    }
  }
#if 0
  double xStep = (x_2 - x_1);
  double yStep = (y_2 - y_1);
  double norm_steps = sqrt( xStep * xStep + yStep * yStep );
  xStep /= norm_steps;
  yStep /= norm_steps;
  int max_coloriage = (int)norm_steps +1;
  int p_x = x_1;
  int p_y = y_1;
  if( check( p_x,  inasegment.width() - 1 ) and check( p_y, inasegment.height() - 1 ) )
  {
    inasegment.setPixelValue<int>( _value, p_x, p_y, 0 );
  }
  for( int k = -1; k <= max_coloriage; ++k )
  {
    int x = (int)( x_1 + k * xStep );
    int y = (int)( y_1 + k * yStep );
    if( check( p_x, inasegment.width() - 1 ) and check( y, inasegment.height() - 1 ) )
    {
      inasegment.setPixelValue<int>( _value, p_x, y, 0 );
    }
    if( check( x, inasegment.width() - 1 ) )
    {
      if( check( p_y, inasegment.height() - 1 ) )
      {
        inasegment.setPixelValue<int>( _value, x, p_y, 0 );
      }
      if( check( y, inasegment.height() - 1 ) )
      {
        inasegment.setPixelValue<int>( _value, x, y, 0 );
      }
    }
    p_x = x;
    p_y = y;
  }
#endif
}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:60,代码来源:DirectSegmentsBase.cpp

示例6: gen

  // suggest new feature point for tracking (count point are kept)
  bool detect
  (
    const image::Image<unsigned char> & ima,
    std::vector<features::PointFeature> & pt_to_track,
    const size_t count
  ) const override
  {
    cv::Mat current_img;
    cv::eigen2cv(ima.GetMat(), current_img);
    std::vector<cv::KeyPoint> m_nextKeypoints;

    cv::Ptr<cv::FeatureDetector> m_detector = cv::GFTTDetector::create(count);
    if (m_detector == NULL)
      return false;

    m_detector->detect(current_img, m_nextKeypoints);

    if (m_nextKeypoints.size() >= count)
    {
      // shuffle to avoid to sample only in one bucket
      std::mt19937 gen(std::mt19937::default_seed);
      std::shuffle(m_nextKeypoints.begin(), m_nextKeypoints.end(), gen);
    }
    const size_t kept_kp_count =  std::min(m_nextKeypoints.size(), count);
    m_nextKeypoints.resize(kept_kp_count);

    pt_to_track.resize(kept_kp_count);
    for (size_t i = 0; i  < kept_kp_count; ++i)
      pt_to_track[i] = features::PointFeature(m_nextKeypoints[i].pt.x, m_nextKeypoints[i].pt.y);

    return kept_kp_count != 0;
    // Return false if no point can be added
  }
开发者ID:autosquid,项目名称:openMVG,代码行数:34,代码来源:Tracker_opencv_klt.hpp

示例7: return

  /// Try to track current point set in the provided image
  /// return false when tracking failed (=> to send frame to relocalization)
  bool track
  (
    const image::Image<unsigned char> & ima,
    const std::vector<features::PointFeature> & pt_to_track,
    std::vector<features::PointFeature> & pt_tracked,
    std::vector<bool> & status
  ) override
  {
    cv::eigen2cv(ima.GetMat(), current_img_);
    if (!pt_to_track.empty())
    {
      prevPts_.resize(pt_to_track.size());
      nextPts_.resize(pt_to_track.size());

      for (size_t i=0; i < pt_to_track.size(); ++i)
      {
        prevPts_[i].x = pt_to_track[i].x();
        prevPts_[i].y = pt_to_track[i].y();
      }

      std::vector<unsigned char> status_uchar;
      cv::calcOpticalFlowPyrLK(prev_img_, current_img_, prevPts_, nextPts_, status_uchar, error_);
      status.assign(status_uchar.begin(), status_uchar.end());

      for (size_t i=0; i < nextPts_.size(); ++i)
      {
        pt_tracked[i].coords() << nextPts_[i].x, nextPts_[i].y;
      }
    }
    // swap frame for next tracking iteration
    current_img_.copyTo(prev_img_);

    const size_t tracked_point_count = std::accumulate(status.begin(), status.end(), 0);
    return (tracked_point_count != 0);
  }
开发者ID:autosquid,项目名称:openMVG,代码行数:37,代码来源:Tracker_opencv_klt.hpp

示例8: computeMask

    /**
     * Fill mask from corresponding points (each point pictured by a disk of radius _radius)
     *
     * \param[out] maskLeft Mask of the left image (initialized to corresponding image size).
     * \param[out] maskRight  Mask of the right image  (initialized to corresponding image size).
     *
     * \return True if some pixel have been set to true.
     */
    virtual bool computeMask( image::Image< unsigned char > & maskLeft, image::Image< unsigned char > & maskRight )
    {
        maskLeft.fill(0);
        maskRight.fill(0);
        for( std::vector< matching::IndMatch >::const_iterator
                iter_putativeMatches = _vec_PutativeMatches.begin();
                iter_putativeMatches != _vec_PutativeMatches.end();
                ++iter_putativeMatches )
        {
            const features::SIOPointFeature & L = _vec_featsL[ iter_putativeMatches->i_ ];
            const features::SIOPointFeature & R = _vec_featsR[ iter_putativeMatches->j_ ];

            image::FilledCircle( L.x(), L.y(), ( int )_radius, ( unsigned char ) 255, &maskLeft );
            image::FilledCircle( R.x(), R.y(), ( int )_radius, ( unsigned char ) 255, &maskRight );
        }
        return _vec_PutativeMatches.size() > 0;
    }
开发者ID:kjaylee,项目名称:openMVG,代码行数:25,代码来源:selection_matchedPoints.hpp

示例9: compute

	double Zncc::compute(image::Image const& im1, image::Image const& im2, float const* weightMatrix)
	{
		JFR_PRECOND(im1.depth() == im2.depth(), "The depth of both images is different");
		switch(im1.depth())
		{
// 			case CV_1U:
// 				if (weightMatrix == NULL)
// 					return computeTpl<CV_1U, bool,bool,0,1,true,false>(im1,im2);
// 				else
// 					return computeTpl<CV_1U, bool,bool,0,1,true,true>(im1,im2,weightMatrix);
			case CV_8U:
				if (weightMatrix == NULL)
					return computeTpl<CV_8U, uint8_t,uint8_t,0,255,true,false>(im1,im2);
				else
					return computeTpl<CV_8U, uint8_t,uint8_t,0,255,true,true>(im1,im2,weightMatrix);
			case CV_8S:
				if (weightMatrix == NULL)
					return computeTpl<CV_8S, int8_t,int8_t, -128,127,true,false>(im1,im2);
				else
					return computeTpl<CV_8S, int8_t,int8_t, -128,127,true,true>(im1,im2,weightMatrix);
			case CV_16U:
				if (weightMatrix == NULL)
					return computeTpl<CV_16U, uint16_t,uint16_t, 0,65535,true,false>(im1,im2);
				else
					return computeTpl<CV_16U, uint16_t,uint16_t, 0,65535,true,true>(im1,im2,weightMatrix);
			case CV_16S:
				if (weightMatrix == NULL)
					return computeTpl<CV_16S, int16_t,int16_t, -32768,32767,true,false>(im1,im2);
				else
					return computeTpl<CV_16S, int16_t,int16_t, -32768,32767,true,true>(im1,im2,weightMatrix);
			case CV_32F:
				if (weightMatrix == NULL) // bool and no borne because cannot use a float as a template parameter, and anyway would be useless here
					return computeTpl<CV_32F, float,bool, 0,0,false,false>(im1,im2);
				else
					return computeTpl<CV_32F, float,bool, 0,0,false,true>(im1,im2,weightMatrix);
			case CV_64F:
				if (weightMatrix == NULL) // bool and no borne because cannot use a float as a template parameter, and anyway would be useless here
					return computeTpl<CV_64F, double,bool, 0,0,false,false>(im1,im2);
				else
					return computeTpl<CV_64F, double,bool, 0,0,false,true>(im1,im2,weightMatrix);
			default:
				JFR_PRECOND(false, "Unknown image depth");
				return FP_NAN;
		}
	}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:45,代码来源:zncc.cpp

示例10: attributes

  /**
  @brief Detect regions on the image and compute their attributes (description)
  @param image Image.
  @param regions The detected regions and attributes (the caller must delete the allocated data)
  @param mask 8-bit gray image for keypoint filtering (optional).
     Non-zero values depict the region of interest.
  */
  bool Describe(const image::Image<unsigned char>& image,
    std::unique_ptr<Regions> &regions,
    const image::Image<unsigned char> * mask = nullptr)
  {
    // Convert for opencv
    cv::Mat img;
    cv::eigen2cv(image.GetMat(), img);

    // Convert mask image into cv::Mat
    cv::Mat m_mask;
    if(mask != nullptr) {
      cv::eigen2cv(mask->GetMat(), m_mask);
    }

    // Create a SIFT detector
    std::vector< cv::KeyPoint > v_keypoints;
    cv::Mat m_desc;
    cv::Ptr<cv::Feature2D> siftdetector = cv::xfeatures2d::SIFT::create();

    // Process SIFT computation
    siftdetector->detectAndCompute(img, m_mask, v_keypoints, m_desc);

    Allocate(regions);

    // Build alias to cached data
    SIFT_Regions * regionsCasted = dynamic_cast<SIFT_Regions*>(regions.get());
    // reserve some memory for faster keypoint saving
    regionsCasted->Features().reserve(v_keypoints.size());
    regionsCasted->Descriptors().reserve(v_keypoints.size());

    // Prepare a column vector with the sum of each descriptor
    cv::Mat m_siftsum;
    cv::reduce(m_desc, m_siftsum, 1, cv::REDUCE_SUM);

    // Copy keypoints and descriptors in the regions
    int cpt = 0;
    for(std::vector< cv::KeyPoint >::const_iterator i_kp = v_keypoints.begin();
        i_kp != v_keypoints.end();
        ++i_kp, ++cpt)
    {
      SIOPointFeature feat((*i_kp).pt.x, (*i_kp).pt.y, (*i_kp).size, (*i_kp).angle);
      regionsCasted->Features().push_back(feat);

      Descriptor<unsigned char, 128> desc;
      for(int j = 0; j < 128; j++)
      {
        desc[j] = static_cast<unsigned char>(512.0*sqrt(m_desc.at<float>(cpt, j)/m_siftsum.at<float>(cpt, 0)));
      }
      regionsCasted->Descriptors().push_back(desc);
    }

    return true;
  };
开发者ID:HustStevenZ,项目名称:openMVG,代码行数:60,代码来源:main_ComputeFeatures_OpenCV.cpp

示例11: snapshot

void snapshot(unsigned call_no) {
    if (!drawable ||
        (!snapshot_prefix && !compare_prefix)) {
        return;
    }

    Image::Image *ref = NULL;

    if (compare_prefix) {
        char filename[PATH_MAX];
        snprintf(filename, sizeof filename, "%s%010u.png", compare_prefix, call_no);
        ref = Image::readPNG(filename);
        if (!ref) {
            return;
        }
        if (retrace::verbosity >= 0) {
            std::cout << "Read " << filename << "\n";
        }
    }

    Image::Image *src = glstate::getDrawBufferImage(GL_RGBA);
    if (!src) {
        return;
    }

    if (snapshot_prefix) {
        char filename[PATH_MAX];
        snprintf(filename, sizeof filename, "%s%010u.png", snapshot_prefix, call_no);
        if (src->writePNG(filename) && retrace::verbosity >= 0) {
            std::cout << "Wrote " << filename << "\n";
        }
    }

    if (ref) {
        std::cout << "Snapshot " << call_no << " average precision of " << src->compare(*ref) << " bits\n";
        delete ref;
    }

    delete src;
}
开发者ID:pzick,项目名称:apitrace,代码行数:40,代码来源:glretrace_main.cpp

示例12: main

int main( int argc , char** argv ){ 
#ifdef DEBUG
	MEM_ON();
	TRACE_OFF();
#endif

	//total execution timer
	Timer totalTimer;
	totalTimer.start();


	std::cout<<"****************************************************************"<<std::endl;
	std::cout<<"*            OpenMP execution with "<<omp_get_max_threads()<<" threads                   *"<<std::endl;
	std::cout<<"****************************************************************"<<std::endl;

	std::cout<<"\n\n\n";



	std::vector<std::string> imageName;
	
	

	std::stringstream input(argv[4]);
	double factor;
	input >> factor;


	int succeded = 0;
	int failed = 0;

	std::string operation( argv[3] );
	//parallel code timer
	Timer parallelTimer;


	//how many images to run in parallel.Number of threads created for the program
        unsigned int parallelImages = omp_get_max_threads();
        //counter for total files for parallel iterations
        unsigned int counter = 0;
        //how many iterations to run in parallel
        unsigned int parallelIterations = parallelImages;
	


	if( GetDirFileNames ( argv[1] , imageName ) )
	
	try {
		parallelTimer.start();
		for( std::vector<std::string>::iterator it = imageName.begin() ; it < imageName.end() ; it += parallelImages ){
				
			counter += parallelImages;
                        parallelIterations = parallelImages;
                        if( counter > imageName.size() )
                                parallelIterations =  imageName.size() - ( counter - parallelImages );

			#pragma omp parallel for
			for( unsigned int i = 0 ; i < parallelIterations ; i++ ) {				

			
				std::cout<<(*(it + i))<<"\n";
				IMAGE::Image* oldImage = NULL;
				IMAGE::Image* newImage = NULL;
				std::string oldName  = argv[1] + (*(it + i));
				std::string newName  = argv[2] + (*(it + i));
				try{

					oldImage= IMAGE::Image::createInstance( oldName );
					newImage = IMAGE::Image::createInstance( newName ); 
				
					////////////////////
					try{
						oldImage->open( oldName, 'r' );
						newImage->open( newName , 'w' );
						oldImage->readImageRaster();
						newImage->raster.createRaster( oldImage->raster );
					
						//check which operation to do
						if( operation == REVERSE ){
	                                                IMAGE::PROCESS::reverseColor( newImage->raster );
        	                                }
						else if( operation == BRIGHTNESS ) {
							IMAGE::PROCESS::adjustBrightness( newImage->raster , atoi( argv[4] ));
						}
						else if( operation == CONTRAST ) {
							IMAGE::PROCESS::adjustContrast( newImage->raster , atoi( argv[4] ) );
						}
                        	                else if( operation == RGB2GREY ) {
                                	                IMAGE::FILTERS::convertRGB2GREY( newImage->raster , atoi( argv[4] ));
                                        	}
						else if( operation == RGB2BW ) {
							IMAGE::FILTERS::convertRGB2BW( newImage->raster );
						}
						else if( operation == RGB2SEPIA ) {
							IMAGE::FILTERS::convertRGB2SEPIA( newImage->raster );
						}
						else if( operation == BLUR ) {
							IMAGE::PROCESS::blurImage( newImage->raster , atoi(argv[4]) );
						}
						else if( operation == ROTATE ) {
//.........这里部分代码省略.........
开发者ID:centosGit,项目名称:ImageProcessing,代码行数:101,代码来源:openmpMain.cpp

示例13:

	double Zncc::compute8noborne(image::Image const& im1, image::Image const& im2)
	{
		JFR_PRECOND(im1.depth() == im2.depth(), "The depth of both images is different");
		JFR_PRECOND(im1.depth() == CV_8U, "The depth of images must be CV_8U");
		return computeTpl<CV_8U, uint8_t,uint8_t,0,255,false,false>(im1,im2);
	}
开发者ID:nelsonn3c,项目名称:monoc_slam_lsa,代码行数:6,代码来源:zncc.cpp

示例14: computeMask

  /**
   * Put masks to white, images are conserved
   *
   * \param[out] maskLeft Mask of the left image (initialized to corresponding image size).
   * \param[out] maskRight  Mask of the right image (initialized to corresponding image size).
   *
   * \return True.
   */
  virtual bool computeMask(
    image::Image< unsigned char > & maskLeft,
    image::Image< unsigned char > & maskRight )
  {
    std::vector< matching::IndMatch > vec_KVLDMatches;

    image::Image< unsigned char > imageL, imageR;
    image::ReadImage( _sLeftImage.c_str(), &imageL );
    image::ReadImage( _sRightImage.c_str(), &imageR );

    image::Image< float > imgA ( imageL.GetMat().cast< float >() );
    image::Image< float > imgB(imageR.GetMat().cast< float >());

    std::vector< Pair > matchesFiltered, matchesPair;

    for( std::vector< matching::IndMatch >::const_iterator iter_match = _vec_PutativeMatches.begin();
          iter_match != _vec_PutativeMatches.end();
          ++iter_match )
    {
      matchesPair.push_back( std::make_pair( iter_match->i_, iter_match->j_ ) );
    }

    std::vector< double > vec_score;

    //In order to illustrate the gvld(or vld)-consistant neighbors, the following two parameters has been externalized as inputs of the function KVLD.
    openMVG::Mat E = openMVG::Mat::Ones( _vec_PutativeMatches.size(), _vec_PutativeMatches.size() ) * ( -1 );
    // gvld-consistancy matrix, intitialized to -1,  >0 consistancy value, -1=unknow, -2=false
    std::vector< bool > valide( _vec_PutativeMatches.size(), true );// indices of match in the initial matches, if true at the end of KVLD, a match is kept.

    size_t it_num = 0;
    KvldParameters kvldparameters;//initial parameters of KVLD
    //kvldparameters.K = 5;
    while (
      it_num < 5 &&
      kvldparameters.inlierRate >
      KVLD(
        imgA, imgB,
        _vec_featsL, _vec_featsR,
        matchesPair, matchesFiltered,
        vec_score, E, valide, kvldparameters ) )
    {
      kvldparameters.inlierRate /= 2;
      std::cout<<"low inlier rate, re-select matches with new rate="<<kvldparameters.inlierRate<<std::endl;
      kvldparameters.K = 2;
      it_num++;
    }

    bool bOk = false;
    if( !matchesPair.empty())
    {
      // Get mask
      getKVLDMask(
        &maskLeft, &maskRight,
        _vec_featsL, _vec_featsR,
        matchesPair,
        valide,
        E);
      bOk = true;
    }
    else{
      maskLeft.fill( 0 );
      maskRight.fill( 0 );
    }

    return bOk;
  }
开发者ID:kjaylee,项目名称:openMVG,代码行数:74,代码来源:selection_VLDSegment.hpp

示例15: Extract

      /**
      * @brief Extract MSER regions
      * @param img Input image
      * @param[out] regions Output regions
      */
      void MSERExtractor::Extract( const image::Image<unsigned char> & img , std::vector<MSERRegion> & regions ) const
      {
        // Compute minimum and maximum region area relative to this image
        const int minRegArea = img.Width() * img.Height() * m_minimum_area;
        const int maxRegArea = img.Width() * img.Height() * m_maximum_area;

        // List of processed pixels (maybe we can use a more efficient structure)
        std::vector<std::vector<bool >> processed;
        processed.resize( img.Width() );
        for (int i = 0; i < img.Width(); ++i )
        {
          processed[ i ].resize( img.Height() );
          std::fill( processed[ i ].begin() , processed[ i ].end() , false );
        }

        // Holds the boundary of given grayscale value (boundary[0] -> pixels in the boundary with 0 grayscale value)
        std::vector<PixelStackElt> boundary[ 256 ];

        // List of regions computed so far (not only valid MSER regions)
        std::vector<MSERRegion *> regionStack;

        // Push en empty region
        regionStack.push_back( new MSERRegion );

        // Start processing from top left pixel
        PixelStackElt cur_pix;
        cur_pix.pix_x = 0;
        cur_pix.pix_y = 0;
        cur_pix.pix_level = img( 0 , 0 );
        cur_pix.edge_index = PIXEL_RIGHT;

        processed[ cur_pix.pix_x ][ cur_pix.pix_y ] = true;

        regionStack.push_back( new MSERRegion( cur_pix.pix_level , cur_pix.pix_x , cur_pix.pix_y ) );

        int priority = 256;

        // Start process
        while (1)
        {
          bool restart = false;

          // Process neighboring to see if there's something to search with lower grayscale level
          for ( PixelNeighborsDirection curDir = cur_pix.edge_index;
                curDir <= PIXEL_BOTTOM_RIGHT;
                curDir = NextDirection( curDir , m_connectivity ) )
          {
            int nx , ny;
            GetNeighbor( cur_pix.pix_x , cur_pix.pix_y , curDir , img.Width() , img.Height() , nx , ny );

            // Pixel was not processed before
            if (ValidPixel( nx , ny , img.Width() , img.Height() ) && ! processed[ nx ][ ny ] )
            {
              const int nLevel = img( ny , nx );
              processed[ nx ][ ny ] = true;

              // Info of the neighboring pixel
              PixelStackElt n_elt;
              n_elt.pix_x = nx;
              n_elt.pix_y = ny;
              n_elt.pix_level = nLevel;
              n_elt.edge_index = PIXEL_RIGHT;

              // Now look from which pixel do we have to continue
              if (nLevel >= cur_pix.pix_level )
              {
                // Continue from the same pixel
                boundary[ nLevel ].push_back( n_elt );

                // Store the lowest value so far
                priority = std::min( nLevel , priority );
              }
              else
              {
                // Go on with the neighboring pixel (go down)
                cur_pix.edge_index = NextDirection( curDir , m_connectivity ); // Next time we have to process the next boundary pixel
                boundary[ cur_pix.pix_level ].push_back( cur_pix );

                // Store the lowest value so far
                priority = std::min( cur_pix.pix_level , priority );

                // Push the next pixel to process
                cur_pix = n_elt;
                restart = true;
                break;
              }
            }
          }
          // Do we have to restart from a new pixel ?
          if (restart )
          {
            // If so it's that because we found a lower grayscale value so let's start a new region
            regionStack.push_back( new MSERRegion( cur_pix.pix_level , cur_pix.pix_x , cur_pix.pix_y ) );
            continue;
          }
//.........这里部分代码省略.........
开发者ID:autosquid,项目名称:openMVG,代码行数:101,代码来源:mser.cpp


注:本文中的image::Image类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。