当前位置: 首页>>代码示例>>C++>>正文


C++ Vector4f::topRows方法代码示例

本文整理汇总了C++中eigen::Vector4f::topRows方法的典型用法代码示例。如果您正苦于以下问题:C++ Vector4f::topRows方法的具体用法?C++ Vector4f::topRows怎么用?C++ Vector4f::topRows使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::Vector4f的用法示例。


在下文中一共展示了Vector4f::topRows方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: cloud

template<template<class > class Distance, typename PointT, typename FeatureT> bool
GlobalNNPipelineROS<Distance,PointT,FeatureT>::classifyROS (classifier_srv_definitions::classify::Request & req, classifier_srv_definitions::classify::Response & response)
    {
        typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>());
        pcl::fromROSMsg(req.cloud, *cloud);
        this->input_ = cloud;

        pcl::PointCloud<pcl::PointXYZRGB>::Ptr pClusteredPCl (new pcl::PointCloud<pcl::PointXYZRGB>());
        pcl::copyPointCloud(*cloud, *pClusteredPCl);

        //clear all data from previous visualization steps and publish empty markers/point cloud
        for (size_t i=0; i < markerArray_.markers.size(); i++)
        {
            markerArray_.markers[i].action = visualization_msgs::Marker::DELETE;
        }
        vis_pub_.publish( markerArray_ );
        sensor_msgs::PointCloud2 scenePc2;
        vis_pc_pub_.publish(scenePc2);
        markerArray_.markers.clear();

        for(size_t cluster_id=0; cluster_id < req.clusters_indices.size(); cluster_id++)
        {
          std::vector<int> cluster_indices_int;
          Eigen::Vector4f centroid;
          Eigen::Matrix3f covariance_matrix;

          const float r = std::rand() % 255;
          const float g = std::rand() % 255;
          const float b = std::rand() % 255;

          this->indices_.resize(req.clusters_indices[cluster_id].data.size());
          for(size_t kk=0; kk < req.clusters_indices[cluster_id].data.size(); kk++)
          {
                this->indices_[kk] = static_cast<int>(req.clusters_indices[cluster_id].data[kk]);
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).r = 0.8*r;
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).g = 0.8*g;
                pClusteredPCl->at(req.clusters_indices[cluster_id].data[kk]).b = 0.8*b;
          }

          this->classify ();

          std::cout << "for cluster " << cluster_id << " with size " << cluster_indices_int.size() << ", I have following hypotheses: " << std::endl;

          object_perception_msgs::classification class_tmp;
          for(size_t kk=0; kk < this->categories_.size(); kk++)
          {
            std::cout << this->categories_[kk] << " with confidence " << this->confidences_[kk] << std::endl;
            std_msgs::String str_tmp;
            str_tmp.data = this->categories_[kk];
            class_tmp.class_type.push_back(str_tmp);
            class_tmp.confidence.push_back( this->confidences_[kk] );
          }
          response.class_results.push_back(class_tmp);

          typename pcl::PointCloud<PointT>::Ptr pClusterPCl_transformed (new pcl::PointCloud<PointT>());
          pcl::computeMeanAndCovarianceMatrix(*this->input_, cluster_indices_int, covariance_matrix, centroid);
          Eigen::Matrix3f eigvects;
          Eigen::Vector3f eigvals;
          pcl::eigen33(covariance_matrix, eigvects,  eigvals);

          Eigen::Vector3f centroid_transformed = eigvects.transpose() * centroid.topRows(3);

          Eigen::Matrix4f transformation_matrix = Eigen::Matrix4f::Zero(4,4);
          transformation_matrix.block<3,3>(0,0) = eigvects.transpose();
          transformation_matrix.block<3,1>(0,3) = -centroid_transformed;
          transformation_matrix(3,3) = 1;

          pcl::transformPointCloud(*this->input_, cluster_indices_int, *pClusterPCl_transformed, transformation_matrix);

          //pcl::transformPointCloud(*frame_, cluster_indices_int, *frame_eigencoordinates_, eigvects);
          PointT min_pt, max_pt;
          pcl::getMinMax3D(*pClusterPCl_transformed, min_pt, max_pt);
          std::cout << "Elongations along eigenvectors: " << max_pt.x - min_pt.x << ", " << max_pt.y - min_pt.y
                    << ", " << max_pt.z - min_pt.z << std::endl;
          geometry_msgs::Point32 centroid_ros;
          centroid_ros.x = centroid[0];
          centroid_ros.y = centroid[1];
          centroid_ros.z = centroid[2];
          response.centroid.push_back(centroid_ros);

          // calculating the bounding box of the cluster
          Eigen::Vector4f min;
          Eigen::Vector4f max;
          pcl::getMinMax3D (*this->input_, cluster_indices_int, min, max);

          object_perception_msgs::BBox bbox;
          geometry_msgs::Point32 pt;
          pt.x = min[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = min[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = min[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = min[1]; pt.z = max[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = max[1]; pt.z = min[2]; bbox.point.push_back(pt);
          pt.x = max[0]; pt.y = max[1]; pt.z = max[2]; bbox.point.push_back(pt);
          response.bbox.push_back(bbox);

          // getting the point cloud of the cluster
          typename pcl::PointCloud<PointT>::Ptr cluster (new pcl::PointCloud<PointT>);
          pcl::copyPointCloud(*this->input_, cluster_indices_int, *cluster);
//.........这里部分代码省略.........
开发者ID:martin-velas,项目名称:v4r_ros_wrappers,代码行数:101,代码来源:global_nn_classifier_ros.cpp


注:本文中的eigen::Vector4f::topRows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。