当前位置: 首页>>代码示例>>C++>>正文


C++ Mat::size方法代码示例

本文整理汇总了C++中cv::Mat::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat::size方法的具体用法?C++ Mat::size怎么用?C++ Mat::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv::Mat的用法示例。


在下文中一共展示了Mat::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: process

void PBASFrameProcessor::process(cv:: Mat &frame, cv:: Mat &output)
{
		const int medFilterSize = 7;
		double meanGradMagn;
		std::vector<AmbiguousCandidate> candidates;
		cv::Mat subSamplingOffset = cv::Mat::zeros(frame.size(), CV_32F);

		if (m_iteration == 0)
		{
			m_lastResult = cv::Mat::zeros(frame.size(), CV_8U);
			m_lastResultPP = cv::Mat::zeros(frame.size(), CV_8U);
			m_noiseMap = cv::Mat::zeros(frame.size(), CV_32F);
			m_gradMagnMap.create(frame.size(), CV_8U);
			m_motionDetector.initialize(frame);
		}
		if (m_iteration != 0)
			m_motionDetector.updateMotionMap(frame);

		//updateGradMagnMap(frame);
		std::vector<PBASFeature> featureMap = PBASFeature::calcFeatureMap(frame);
		//meanGradMagn = PBASFeature::calcMeanGradMagn(featureMap, frame.rows, frame.cols);
		//PBASFeature::setColorWeight(0.8 - meanGradMagn / 255);
		
		m_pbas.process(featureMap, frame.rows, frame.cols, m_currentResult, m_motionDetector.getMotionMap());

		if (m_pbas.isInitialized())
		{
			m_motionDetector.updateCandidates(m_currentResultPP);
			m_motionDetector.classifyStaticCandidates(frame, m_pbas.drawBgSample(), m_currentResultPP);

			candidates = m_motionDetector.getStaticObjects();

			for (int k = 0; k < candidates.size(); ++k)
			{
				if (candidates[k].state == DETECTOR_GHOST_OBJECT)
				{
					subSamplingOffset(candidates[k].boundingBox) -= 100;
				}
				else if ((candidates[k].state == DETECTOR_STATIC_OBJECT))
				{
					subSamplingOffset(candidates[k].boundingBox) += 50;
				}
				
			}
			m_pbas.subSamplingOffset(subSamplingOffset);
			
			#ifndef _DATASET	
			MotionDetector::drawBoundingBoxesClassified(frame, m_outputWithBb, candidates);
			#endif 
		}



// !_DATASET

		// normalize gradient magnmap

		//parallelBackgroundAveraging(&rgbChannels, false, &m_currentResult);
		//###############################################
		//POST-PROCESSING HERE
		//for the final results in the changedetection-challenge a 9x9 median filter has been applied
		cv::medianBlur(m_currentResult, m_currentResultPP, medFilterSize);

		//###############################################
		m_currentResultPP.copyTo(output);
		updateNoiseMap();
		m_currentResult.copyTo(m_lastResult);
		++m_iteration;
}
开发者ID:anhDean,项目名称:PBAS-,代码行数:69,代码来源:PBASFrameProcessor.cpp

示例2: RGBDOdometry

bool cv::RGBDOdometry( cv::Mat& Rt, const Mat& initRt,
                       const cv::Mat& image0, const cv::Mat& _depth0, const cv::Mat& validMask0,
                       const cv::Mat& image1, const cv::Mat& _depth1, const cv::Mat& validMask1,
                       const cv::Mat& cameraMatrix, float minDepth, float maxDepth, float maxDepthDiff,
                       const std::vector<int>& iterCounts, const std::vector<float>& minGradientMagnitudes,
                       int transformType )
{
    const int sobelSize = 3;
    const double sobelScale = 1./8;

    Mat depth0 = _depth0.clone(),
        depth1 = _depth1.clone();

    // check RGB-D input data
    CV_Assert( !image0.empty() );
    CV_Assert( image0.type() == CV_8UC1 );
    CV_Assert( depth0.type() == CV_32FC1 && depth0.size() == image0.size() );

    CV_Assert( image1.size() == image0.size() );
    CV_Assert( image1.type() == CV_8UC1 );
    CV_Assert( depth1.type() == CV_32FC1 && depth1.size() == image0.size() );

    // check masks
    CV_Assert( validMask0.empty() || (validMask0.type() == CV_8UC1 && validMask0.size() == image0.size()) );
    CV_Assert( validMask1.empty() || (validMask1.type() == CV_8UC1 && validMask1.size() == image0.size()) );

    // check camera params
    CV_Assert( cameraMatrix.type() == CV_32FC1 && cameraMatrix.size() == Size(3,3) );

    // other checks
    CV_Assert( iterCounts.empty() || minGradientMagnitudes.empty() ||
               minGradientMagnitudes.size() == iterCounts.size() );
    CV_Assert( initRt.empty() || (initRt.type()==CV_64FC1 && initRt.size()==Size(4,4) ) );

    std::vector<int> defaultIterCounts;
    std::vector<float> defaultMinGradMagnitudes;
    std::vector<int> const* iterCountsPtr = &iterCounts;
    std::vector<float> const* minGradientMagnitudesPtr = &minGradientMagnitudes;

    if( iterCounts.empty() || minGradientMagnitudes.empty() )
    {
        defaultIterCounts.resize(4);
        defaultIterCounts[0] = 7;
        defaultIterCounts[1] = 7;
        defaultIterCounts[2] = 7;
        defaultIterCounts[3] = 10;

        defaultMinGradMagnitudes.resize(4);
        defaultMinGradMagnitudes[0] = 12;
        defaultMinGradMagnitudes[1] = 5;
        defaultMinGradMagnitudes[2] = 3;
        defaultMinGradMagnitudes[3] = 1;

        iterCountsPtr = &defaultIterCounts;
        minGradientMagnitudesPtr = &defaultMinGradMagnitudes;
    }

    preprocessDepth( depth0, depth1, validMask0, validMask1, minDepth, maxDepth );

    std::vector<Mat> pyramidImage0, pyramidDepth0,
                pyramidImage1, pyramidDepth1, pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1,
                pyramidCameraMatrix;
    buildPyramids( image0, image1, depth0, depth1, cameraMatrix, sobelSize, sobelScale, *minGradientMagnitudesPtr,
                   pyramidImage0, pyramidDepth0, pyramidImage1, pyramidDepth1,
                   pyramid_dI_dx1, pyramid_dI_dy1, pyramidTexturedMask1, pyramidCameraMatrix );

    Mat resultRt = initRt.empty() ? Mat::eye(4,4,CV_64FC1) : initRt.clone();
    Mat currRt, ksi;
    for( int level = (int)iterCountsPtr->size() - 1; level >= 0; level-- )
    {
        const Mat& levelCameraMatrix = pyramidCameraMatrix[level];

        const Mat& levelImage0 = pyramidImage0[level];
        const Mat& levelDepth0 = pyramidDepth0[level];
        Mat levelCloud0;
        cvtDepth2Cloud( pyramidDepth0[level], levelCloud0, levelCameraMatrix );

        const Mat& levelImage1 = pyramidImage1[level];
        const Mat& levelDepth1 = pyramidDepth1[level];
        const Mat& level_dI_dx1 = pyramid_dI_dx1[level];
        const Mat& level_dI_dy1 = pyramid_dI_dy1[level];

        CV_Assert( level_dI_dx1.type() == CV_16S );
        CV_Assert( level_dI_dy1.type() == CV_16S );

        const double fx = levelCameraMatrix.at<double>(0,0);
        const double fy = levelCameraMatrix.at<double>(1,1);
        const double determinantThreshold = 1e-6;

        Mat corresps( levelImage0.size(), levelImage0.type() );

        // Run transformation search on current level iteratively.
        for( int iter = 0; iter < (*iterCountsPtr)[level]; iter ++ )
        {
            int correspsCount = computeCorresp( levelCameraMatrix, levelCameraMatrix.inv(), resultRt.inv(DECOMP_SVD),
                                                levelDepth0, levelDepth1, pyramidTexturedMask1[level], maxDepthDiff,
                                                corresps );

            if( correspsCount == 0 )
                break;
//.........这里部分代码省略.........
开发者ID:4auka,项目名称:opencv,代码行数:101,代码来源:rgbdodometry.cpp

示例3: abs

cv::Mat
Auvsi_Recognize::centerBinary( cv::Mat input )
{
	typedef cv::Vec<unsigned char, 1> VT_binary;

	cv::Mat buffered = cv::Mat( input.rows * 2, input.cols * 2, input.type() );
	cv::Mat retVal;

	int centerX, centerY;
	int minX, minY, maxX, maxY;
	int radiusX, radiusY;
	std::vector<int> xCoords;
	std::vector<int> yCoords;

	// Get centroid
	cv::Moments imMoments = cv::moments( input, true );

	centerX = (imMoments.m10 / imMoments.m00) - buffered.cols / 2;
	centerY = (imMoments.m01 / imMoments.m00) - buffered.rows / 2;

	// Get centered x and y coordinates
	cv::MatIterator_<VT_binary> inputIter = input.begin<VT_binary>();
	cv::MatIterator_<VT_binary> inputEnd = input.end<VT_binary>();

	for( ; inputIter != inputEnd; ++inputIter )
	{
		unsigned char value = (*inputIter)[0];
		if( value )
		{
			xCoords.push_back( inputIter.pos().x - centerX );
			yCoords.push_back( inputIter.pos().y - centerY );
		}
	}

	if( xCoords.size() <= 0 || yCoords.size() <= 0 ) // nothing in image
	{
		return input;
	}

	// Get min and max x and y coords (centered)
	minX = *std::min_element( xCoords.begin(), xCoords.end() );
	minY = *std::min_element( yCoords.begin(), yCoords.end() );
	maxX = *std::max_element( xCoords.begin(), xCoords.end() );
	maxY = *std::max_element( yCoords.begin(), yCoords.end() );	

	// Get new centroids
	centerX = getVectorMean<int>( xCoords );
	centerY = getVectorMean<int>( yCoords );

	// Get radius from center in each direction
	radiusX = std::max( abs(maxX - centerX), abs(centerX - minX) );
	radiusY = std::max( abs(maxY - centerY), abs(centerY - minY) );

	// Center image in temporary buffered array
	buffered = cvScalar(0);

	std::vector<int>::iterator iterX = xCoords.begin();
	std::vector<int>::iterator endX = xCoords.end();
	std::vector<int>::iterator iterY = yCoords.begin();

	for( ; iterX != endX; ++iterX, ++iterY )
	{
		buffered.at<VT_binary>( *iterY, *iterX ) = VT_binary(255);
	}

	// Center image
	buffered = buffered.colRange( centerX - radiusX, centerX + radiusX + 1 );
	buffered = buffered.rowRange( centerY - radiusY, centerY + radiusY + 1 );

	// Add extra padding to make square
	int outH, outW;
	outH = buffered.rows;
	outW = buffered.cols;
	
	if( outH < outW ) // pad height
		cv::copyMakeBorder( buffered, retVal, (outW-outH)/2, (outW-outH)/2, 0, 0, cv::BORDER_CONSTANT, cvScalar(0) );
	else // pad width
		cv::copyMakeBorder( buffered, retVal, 0, 0, (outH-outW)/2, (outH-outW)/2, cv::BORDER_CONSTANT, cvScalar(0) );

	// Make sure output is desired width
	cv::resize( retVal, buffered, input.size(), 0, 0, cv::INTER_NEAREST );
	
	return buffered;
}
开发者ID:sharma16aug,项目名称:ucsd-auvsi-uas,代码行数:84,代码来源:Auvsi_Recognize.cpp

示例4: orientation

	cv::Mat orientation(cv::Mat inputImage)
	{
		cv::Mat orientationMat = cv::Mat::zeros(inputImage.size(), CV_8UC1);

		// compute gradients at each pixel
		cv::Mat grad_x, grad_y;
		cv::Sobel(inputImage, grad_x, CV_16SC1, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
		cv::Sobel(inputImage, grad_y, CV_16SC1, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT);

		cv::Mat Vx, Vy, theta, lowPassX, lowPassY;
		cv::Mat lowPassX2, lowPassY2;

		Vx = cv::Mat::zeros(inputImage.size(), inputImage.type());
		Vx.copyTo(Vy);
		Vx.copyTo(theta);
		Vx.copyTo(lowPassX);
		Vx.copyTo(lowPassY);
		Vx.copyTo(lowPassX2);
		Vx.copyTo(lowPassY2);

		// estimate the local orientation of each block
		int blockSize = 16;

		for (int i = blockSize / 2; i < inputImage.rows - blockSize / 2; i += blockSize)
		{
			for (int j = blockSize / 2; j < inputImage.cols - blockSize / 2; j += blockSize)
			{
				float sum1 = 0.0;
				float sum2 = 0.0;

				for (int u = i - blockSize / 2; u < i + blockSize / 2; u++)
				{
					for (int v = j - blockSize / 2; v < j + blockSize / 2; v++)
					{
						sum1 += grad_x.at<float>(u, v) * grad_y.at<float>(u, v);
						sum2 += (grad_x.at<float>(u, v)*grad_x.at<float>(u, v)) * (grad_y.at<float>(u, v)*grad_y.at<float>(u, v));
					}
				}

				Vx.at<float>(i, j) = sum1;
				Vy.at<float>(i, j) = sum2;

				double calc = 0.0;

				if (sum1 != 0 && sum2 != 0)
				{
					calc = 0.5 * atan(Vy.at<float>(i, j) / Vx.at<float>(i, j));
				}

				theta.at<float>(i, j) = calc;

				// Perform low-pass filtering
				float angle = 2 * calc;
				lowPassX.at<float>(i, j) = cos(angle * CV_PI / 180);
				lowPassY.at<float>(i, j) = sin(angle * CV_PI / 180);

				float sum3 = 0.0;
				float sum4 = 0.0;
				int lowPassSize;

				for (int u = -lowPassSize / 2; u < lowPassSize / 2; u++)
				{
					for (int v = -lowPassSize / 2; v < lowPassSize / 2; v++)
					{
						sum3 += inputImage.at<float>(u, v) * lowPassX.at<float>(i - u*lowPassSize, j - v * lowPassSize);
						sum4 += inputImage.at<float>(u, v) * lowPassY.at<float>(i - u*lowPassSize, j - v * lowPassSize);
					}
				}
				lowPassX2.at<float>(i, j) = sum3;
				lowPassY2.at<float>(i, j) = sum4;

				float calc2 = 0.0;

				if (sum3 != 0 && sum4 != 0)
				{
					calc2 = 0.5 * atan(lowPassY2.at<float>(i, j) / lowPassX2.at<float>(i, j)) * 180 / CV_PI;
				}
				orientationMat.at<float>(i, j) = calc2;

			}

		}
		return orientationMat;
	}
开发者ID:qdao,项目名称:FYP,代码行数:84,代码来源:Orientation.cpp

示例5: gradient

/*Function to calculate the integral histogram*/
std::vector<cv::Mat> calculateIntegralHOG(const cv::Mat& _in, const int _nbins) {
  /*Convert the input image to grayscale*/
//  cv::Mat img_gray;

//  cv::cvtColor(_in, img_gray, CV_BGR2GRAY);
//  cv::equalizeHist(img_gray, img_gray);

  /* Calculate the derivates of the grayscale image in the x and y
   directions using a sobel operator and obtain 2 gradient images
   for the x and y directions*/

  cv::Mat xsobel, ysobel;
  cv::Sobel(_in, xsobel, CV_32FC1, 1, 0);
  cv::Sobel(_in, ysobel, CV_32FC1, 0, 1);

  //Gradient magnitude
  cv::Mat gradient_magnitude;
  cv::magnitude(xsobel, ysobel, gradient_magnitude);
  //Gradient orientation
  cv::Mat gradient_orientation;
  bool angleInDegrees = true;
  cv::phase(xsobel, ysobel, gradient_orientation, angleInDegrees);

//  std::cout << "_in=" << _in.rows << "x" << _in.cols << std::endl;
//  std::cout << "gradient_magnitude=" << gradient_magnitude.rows << "x" << gradient_magnitude.cols << std::endl;
//  std::cout << "gradient_orientation=" << gradient_orientation.rows << "x" << gradient_orientation.cols << std::endl;
//
//  double min_angle, max_angle;
//  cv::minMaxLoc(gradient_orientation, &min_angle, &max_angle, NULL, NULL);
//  std::cout << "min_angle=" << min_angle << " ; max_angle=" << max_angle << std::endl;


  //TODO: useless ?
//  img_gray.release();

  /* Create an array of 9 images (9 because I assume bin size 20 degrees
   and unsigned gradient ( 180/20 = 9), one for each bin which will have
   zeroes for all pixels, except for the pixels in the original image
   for which the gradient values correspond to the particular bin.
   These will be referred to as bin images. These bin images will be then
   used to calculate the integral histogram, which will quicken
   the calculation of HOG descriptors */

  std::vector<cv::Mat> bins(_nbins);
  for (int i = 0; i < _nbins; i++) {
    bins[i] = cv::Mat::zeros(_in.size(), CV_32FC1);
  }

  /* Create an array of 9 images ( note the dimensions of the image,
   the cvIntegral() function requires the size to be that), to store
   the integral images calculated from the above bin images.
   These 9 integral images together constitute the integral histogram */

  std::vector<cv::Mat> integrals(_nbins);
  //IplImage** integrals = (IplImage**) malloc(9 * sizeof(IplImage*));
  for (int i = 0; i < _nbins; i++) {
    integrals[i] = cv::Mat(
        cv::Size(_in.size().width + 1, _in.size().height + 1), CV_64FC1);
  }

  /* Calculate the bin images. The magnitude and orientation of the gradient
   at each pixel is calculated using the xsobel and ysobel images.
   {Magnitude = sqrt(sq(xsobel) + sq(ysobel) ), gradient = itan (ysobel/xsobel) }.
   Then according to the orientation of the gradient, the value of the
   corresponding pixel in the corresponding image is set */

  int x, y;
  float temp_gradient, temp_magnitude;
  for (y = 0; y < _in.size().height; y++) {
    /* ptr1 and ptr2 point to beginning of the current row in the xsobel and ysobel images
     respectively.
     ptrs[i] point to the beginning of the current rows in the bin images */

#if 0
    float* xsobelRowPtr = (float*) (xsobel.row(y).data);
    float* ysobelRowPtr = (float*) (ysobel.row(y).data);
    float** binsRowPtrs = new float *[_nbins];

    for (int i = 0; i < _nbins; i++) {
      binsRowPtrs[i] = (float*) (bins[i].row(y).data);
    }
#else
    float* xsobelRowPtr = xsobel.ptr<float>(y);
    float* ysobelRowPtr = ysobel.ptr<float>(y);
    float** binsRowPtrs = new float *[_nbins];

    for (int i = 0; i < _nbins; i++) {
      binsRowPtrs[i] = bins[i].ptr<float>(y);
    }

    float* magnitudeRowPtr = gradient_magnitude.ptr<float>(y);
    float* orientationRowPtr = gradient_orientation.ptr<float>(y);
#endif

    /*For every pixel in a row gradient orientation and magnitude
     are calculated and corresponding values set for the bin images. */
    for (x = 0; x < _in.size().width; x++) {
#if 0
      /* if the xsobel derivative is zero for a pixel, a small value is
//.........这里部分代码省略.........
开发者ID:s-trinh,项目名称:Chamfer-Matching,代码行数:101,代码来源:test-hog.cpp

示例6: optimized_elec

void optimized_elec(const PointCloud<pcl::PointXYZRGB> &cloud, const cv::Mat& src_labels, float tolerance,
                    std::vector<std::vector<PointIndices> > &labeled_clusters,
                    unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster, unsigned int num_parts,
                    bool brute_force_border, float radius_scale)
{
    typedef unsigned char uchar;

    Size sz = src_labels.size();

    cv::Mat dst_labels(sz, CV_32S, Scalar(-1));
    cv::Mat wavefront(sz, CV_32SC2);
    cv::Mat region_sizes = Mat::zeros(sz, CV_32S);

    Point2i *wf = wavefront.ptr<Point2i>();
    int *rsizes = region_sizes.ptr<int>();

    int cc = -1;

    double squared_radius = tolerance * tolerance;

    for(int j = 0; j < sz.height; ++j)
    {
        for(int i = 0; i < sz.width; ++i)
        {
            if (src_labels.at<uchar>(j, i) >= num_parts || dst_labels.at<int>(j, i) != -1) // invalid label && has been labeled
                continue;

            Point2i* ws = wf; // initialize wavefront
            Point2i p(i, j);  // current pixel

            cc++;	// next label

            dst_labels.at<int>(j, i) = cc;
            int count = 0;	// current region size

            // wavefront propagation
            while( ws >= wf ) // wavefront not empty
            {
                // put neighbors onto wavefront
                const uchar* sl = &src_labels.at<uchar>(p.y, p.x);
                int*         dl = &dst_labels.at<  int>(p.y, p.x);
                const pcl::PointXYZRGB *sp = &cloud.at(p.x, p.y);

                //right
                if( p.x < sz.width-1 && dl[+1] == -1 && sl[+1] == sl[0])
                    if (sqnorm(sp[0], sp[+1]) <= squared_radius)
                    {
                        dl[+1] = cc;
                        *ws++ = Point2i(p.x+1, p.y);
                    }

                //left
                if( p.x > 0 && dl[-1] == -1 && sl[-1] == sl[0])
                    if (sqnorm(sp[0], sp[-1]) <= squared_radius)
                    {
                        dl[-1] = cc;
                        *ws++ = Point2i(p.x-1, p.y);
                    }

                //top
                if( p.y < sz.height-1 && dl[+sz.width] == -1 && sl[+sz.width] == sl[0])
                    if (sqnorm(sp[0], sp[+sz.width]) <= squared_radius)
                    {
                        dl[+sz.width] = cc;
                        *ws++ = Point2i(p.x, p.y+1);
                    }


                //top
                if( p.y > 0 && dl[-sz.width] == -1 && sl[-sz.width] == sl[0])
                    if (sqnorm(sp[0], sp[-sz.width]) <= squared_radius)
                    {
                        dl[-sz.width] = cc;
                        *ws++ = Point2i(p.x, p.y-1);
                    }

                // pop most recent and propagate
                p = *--ws;
                count++;
            }

            rsizes[cc] = count;
        } /* for(int i = 0; i < sz.width; ++i) */
    } /* for(int j = 0; j < sz.height; ++j) */

    Mat djset(sz, CV_32S);
    int* dj = djset.ptr<int>();
    yota(dj, dj + sz.area(), 0);


    if (brute_force_border)
    {
        pcl::ScopeTime time("border");

        SearchD search;
        search.setInputCloud(cloud.makeShared());

#define HT_USE_OMP

#ifdef HT_USE_OMP
//.........这里部分代码省略.........
开发者ID:amuetzel,项目名称:HumanDataGen,代码行数:101,代码来源:optimzed_elec.cpp

示例7:

/**
* read data
*/
bool KGDAL2CV::readData(cv::Mat img){
	// make sure the image is the proper size
	if (img.size().height != m_height){
		return false;
	}
	if (img.size().width != m_width){
		return false;
	}

	// make sure the raster is alive
	if (m_dataset == NULL || m_driver == NULL){
		return false;
	}

	// set the image to zero
	img = 0;

	// iterate over each raster band
	// note that OpenCV does bgr rather than rgb
	int nChannels = m_dataset->GetRasterCount();

	GDALColorTable* gdalColorTable = NULL;
	if (m_dataset->GetRasterBand(1)->GetColorTable() != NULL){
		gdalColorTable = m_dataset->GetRasterBand(1)->GetColorTable();
	}

	const GDALDataType gdalType = m_dataset->GetRasterBand(1)->GetRasterDataType();
	int nRows, nCols;

	//if (nChannels > img.channels()){
	//	nChannels = img.channels();
	//}

	for (int c = 0; c < img.channels(); c++){

		int realBandIndex = c;
		
		// get the GDAL Band
		GDALRasterBand* band = m_dataset->GetRasterBand(c + 1);

		//if (hasColorTable == false){
		if (GCI_RedBand == band->GetColorInterpretation()) realBandIndex = 2;
		if (GCI_GreenBand == band->GetColorInterpretation()) realBandIndex = 1;
		if (GCI_BlueBand == band->GetColorInterpretation()) realBandIndex = 0;
		//}
		if (hasColorTable && gdalColorTable->GetPaletteInterpretation() == GPI_RGB) c = img.channels() - 1;
		// make sure the image band has the same dimensions as the image
		if (band->GetXSize() != m_width || band->GetYSize() != m_height){ return false; }

		// grab the raster size
		nRows = band->GetYSize();
		nCols = band->GetXSize();

		// create a temporary scanline pointer to store data
		double* scanline = new double[nCols];

		// iterate over each row and column
		for (int y = 0; y<nRows; y++){

			// get the entire row
			band->RasterIO(GF_Read, 0, y, nCols, 1, scanline, nCols, 1, GDT_Float64, 0, 0);

			// set inside the image
			for (int x = 0; x<nCols; x++){

				// set depending on image types
				// given boost, I would use enable_if to speed up.  Avoid for now.
				if (hasColorTable == false){
					write_pixel(scanline[x], gdalType, nChannels, img, y, x, realBandIndex);
				}
				else{
					write_ctable_pixel(scanline[x], gdalType, gdalColorTable, img, y, x, c);
				}
			}
		}
		// delete our temp pointer
		delete[] scanline;
	}

	return true;
}
开发者ID:PlainSailing,项目名称:GDAL2CV,代码行数:84,代码来源:gdal2cv.cpp

示例8: foreground

void T2FMRF_UM::process(const cv::Mat &img_input, cv::Mat &img_output, cv::Mat &img_bgmodel)
{
  if(img_input.empty())
    return;

  loadConfig();

  if(firstTime)
    saveConfig();

  frame = new IplImage(img_input);
  
  if(firstTime)
    frame_data.ReleaseMemory(false);
  frame_data = frame;

  if(firstTime)
  {
    int width	= img_input.size().width;
    int height = img_input.size().height;

    lowThresholdMask = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, 1);
    lowThresholdMask.Ptr()->origin = IPL_ORIGIN_BL;

    highThresholdMask = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, 1);
    highThresholdMask.Ptr()->origin = IPL_ORIGIN_BL;

    params.SetFrameSize(width, height);
    params.LowThreshold() = threshold;
    params.HighThreshold() = 2*params.LowThreshold();
    params.Alpha() = alpha;
    params.MaxModes() = gaussians;
    params.Type() = TYPE_T2FMRF_UM;
    params.KM() = km; // Factor control for the T2FMRF-UM [0,3] default: 2
    params.KV() = kv; // Factor control for the T2FMRF-UV [0.3,1] default: 0.9

    bgs.Initalize(params);
    bgs.InitModel(frame_data);

    old_labeling = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, 1);
    old = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, 1);

    mrf.height = height;
	  mrf.width = width;
    mrf.Build_Classes_OldLabeling_InImage_LocalEnergy();

    firstTime = false;
  }

  bgs.Subtract(frameNumber, frame_data, lowThresholdMask, highThresholdMask);
  cvCopy(lowThresholdMask.Ptr(), old);

  /************************************************************************/
	/* the code for MRF, it can be noted when using other methods   */
	/************************************************************************/
	//the optimization process is done when the foreground detection is stable, 
	if(frameNumber >= 10)
	{
		gmm = bgs.gmm();
		hmm = bgs.hmm();
		mrf.background2 = frame_data.Ptr();
		mrf.in_image = lowThresholdMask.Ptr();
		mrf.out_image = lowThresholdMask.Ptr();
		mrf.InitEvidence2(gmm,hmm,old_labeling);
		mrf.ICM2();
		cvCopy(mrf.out_image, lowThresholdMask.Ptr());
	}

  cvCopy(old, old_labeling);

  lowThresholdMask.Clear();
  bgs.Update(frameNumber, frame_data, lowThresholdMask);
  
  cv::Mat foreground(highThresholdMask.Ptr());

  if(showOutput)
    cv::imshow("T2FMRF-UM", foreground);
  
  foreground.copyTo(img_output);

  delete frame;
  frameNumber++;
}
开发者ID:2php,项目名称:ShadowDetection,代码行数:83,代码来源:T2FMRF_UM.cpp

示例9: vor

//buil the VOR once(weighted vor diagram?)
void CVT::vor(cv::Mat &  img)
{
	cv::Mat dist(img.size(), CV_32F, cv::Scalar::all(FLT_MAX)); //an image with infinity distance
	cv::Mat root(img.size(), CV_16U, cv::Scalar::all(USHRT_MAX)); //an image of root index
	cv::Mat visited(img.size(), CV_8U, cv::Scalar::all(0)); //all unvisited


	//init
	std::vector< std::pair<float, cv::Point> > open;
	ushort site_id = 0;
	for (auto& c : this->cells)
	{
		if (debug)
		{
			if (c.site.x<0 || c.site.x>img.size().height)
				std::cout << "! Warning: c.site.x=" << c.site.x << std::endl;

			if (c.site.y<0 || c.site.y>img.size().width)
				std::cout << "! Warning: c.site.y=" << c.site.y << std::endl;
		}


		cv::Point pix((int)c.site.x, (int)c.site.y);
		float d = color2dist(img, pix);
		//dist에 2D에서의 color value저장. dist 가 크다 <-> 흰색에 가깝다.
		dist.at<float>(pix.x, pix.y) = d;
		root.at<ushort>(pix.x, pix.y) = site_id++;
		open.push_back( std::make_pair(d, pix) );//push
		c.coverage.clear();
	}
	
	std::make_heap(open.begin(), open.end(), compareCell);

	//propagate
	while (open.empty() == false)
	{
		//
		std::pop_heap(open.begin(), open.end(), compareCell);//pop, 저장된 color value와 point pair를 꺼낸다.
		auto cell = open.back();
		auto& cpos = cell.second;
		open.pop_back();

		//check if the distance from this cell is already updated
		if (cell.first > dist.at<float>(cpos.x, cpos.y)) continue;
		if (visited.at<uchar>(cpos.x, cpos.y) > 0) continue; //visited
		visited.at<uchar>(cpos.x, cpos.y) = 1;

		//check the neighbors
		for (int dx =-1; dx <= 1; dx++) //x is row
		{
			int x = cpos.x + dx;
			if (x < 0 || x >= img.size().height) continue;
			for (int dy = -1; dy <= 1; dy++) //y is column
			{
				if (dx == 0 && dy == 0) continue; //itself...

				int y = cpos.y + dy;
				if (y < 0 || y >= img.size().width) continue;
				float newd = dist.at<float>(cpos.x, cpos.y) + color2dist(img, cv::Point(x, y));
				float oldd = dist.at<float>(x, y);

				if (newd < oldd)
				{
					dist.at<float>(x, y)=newd;
					root.at<ushort>(x, y) = root.at<ushort>(cpos.x, cpos.y);
					open.push_back(std::make_pair(newd, cv::Point(x, y)));
					std::push_heap(open.begin(), open.end(), compareCell);
				}
			}//end for dy
		}//end for dx
	}//end while

	//collect cells
	for (int x = 0; x < img.size().height; x++)
	{
		for (int y = 0; y < img.size().width; y++)
		{
			ushort rootid = root.at<ushort>(x, y);
			this->cells[rootid].coverage.push_back(cv::Point(x,y));
		}//end y
	}//end x

	//remove empty cells...CVT할때를 위해
	int cvt_size = this->cells.size();
	for (int i = 0; i < cvt_size; i++)
	{
		if (this->cells[i].coverage.empty())
		{
			this->cells[i] = this->cells.back();
			this->cells.pop_back();
			i--;
			cvt_size--;
		}
	}//end for i

	if (debug)
	{
		//this shows the progress...
		double min;
//.........这里部分代码省略.........
开发者ID:morankim,项目名称:stipple_MidtermProject_MoranKim,代码行数:101,代码来源:wcvt.cpp

示例10: main

/*!
 *
 */
int main(int argc,char **argv)
{
  readArguments(argc,argv);

  aruco::BoardConfiguration boardConf;
  boardConf.readFromFile(boC->sval[0]);

  cv::VideoCapture vcapture;

  //read from camera or from  file
  if (strcmp(inp->sval[0], "live")==0)
  {
    vcapture.open(0);
    vcapture.set(CV_CAP_PROP_FRAME_WIDTH,  wid->ival[0]);
    vcapture.set(CV_CAP_PROP_FRAME_HEIGHT, hei->ival[0]);
    int val = CV_FOURCC('M', 'P', 'E', 'G');
    vcapture.set(CV_CAP_PROP_FOURCC, val);
  }
  else
    vcapture.open(inp->sval[0]);

  //check video is open
  if (!vcapture.isOpened())
  {
    std::cerr<<"Could not open video"<<std::endl;
    return -1;
  }

  //read first image to get the dimensions
  vcapture>>inpImg;

  //Open outputvideo
  cv::VideoWriter vWriter;
  if (out->count)
    vWriter.open(out->sval[0], CV_FOURCC('M','J','P','G'), fps->ival[0], inpImg.size());

  //read camera parameters if passed
  if (intr->count)
  {
    params.readFromXMLFile(intr->sval[0]);
    params.resize(inpImg.size());
  }

  //Create gui
  cv::namedWindow("thres", CV_GUI_NORMAL | CV_WINDOW_AUTOSIZE);
  cv::namedWindow("in", CV_GUI_NORMAL | CV_WINDOW_AUTOSIZE);
  cvMoveWindow("thres", 0, 0);
  cvMoveWindow("in", inpImg.cols + 5, 0);
  boardDetector.setParams(boardConf,params,msiz->dval[0]);
  boardDetector.getMarkerDetector().getThresholdParams( dThresParam1,dThresParam2);
//  boardDetector.getMarkerDetector().enableErosion(true);//for chessboards
  iThresParam1=dThresParam1;
  iThresParam2=dThresParam2;
  cv::createTrackbar("ThresParam1", "in",&iThresParam1, 13, cvTrackBarEvents);
  cv::createTrackbar("ThresParam2", "in",&iThresParam2, 13, cvTrackBarEvents);
  int index=0;

  ///////////////
  // Main Lopp //
  ///////////////
  while(appRunnin)
  {
    inpImg.copyTo(inpImgCpy);
    index++;                                    //number of images captured
    double tick = static_cast<double>(cv::getTickCount());//for checking the speed
    float probDetect=boardDetector.detect(inpImg); //Detection of the board
    tick=(static_cast<double>(cv::getTickCount())-tick)/cv::getTickFrequency();
    std::cout<<"Time detection="<<1000*tick<<" milliseconds"<<std::endl;
    //print marker borders
    for (unsigned int i=0; i<boardDetector.getDetectedMarkers().size(); i++)
      boardDetector.getDetectedMarkers()[i].draw(inpImgCpy,cv::Scalar(0,0,255),1);

    //print board
    if (params.isValid())
    {
      if ( probDetect>thre->dval[0])
      {
        aruco::CvDrawingUtils::draw3dAxis( inpImgCpy,boardDetector.getDetectedBoard(),params);
      }
    }
    //DONE! Easy, right?

    //show input with augmented information and the thresholded image
    cv::imshow("in",inpImgCpy);
    cv::imshow("thres",boardDetector.getMarkerDetector().getThresholdedImage());

    // write to video if desired
    if (out->count)
    {
      //create a beautiful composed image showing the thresholded
      //first create a small version of the thresholded image
      cv::Mat smallThres;
      cv::resize(boardDetector.getMarkerDetector().getThresholdedImage(),smallThres,
                 cv::Size(inpImgCpy.cols/3,inpImgCpy.rows/3));
      cv::Mat small3C;
      cv::cvtColor(smallThres,small3C,CV_GRAY2BGR);
      cv::Mat roi=inpImgCpy(cv::Rect(0,0,inpImgCpy.cols/3,inpImgCpy.rows/3));
//.........这里部分代码省略.........
开发者ID:j0x7c4,项目名称:aruco-1,代码行数:101,代码来源:aruco_test_board.cpp

示例11: Ransac_for_buildings

bool Segmentation::Ransac_for_buildings(float dem_spacing, double ransac_threshold, cv::Mat original_tiles_merged)
{   
	StepResource pStep("Computing RANSAC on all the identified buildings", "app", "a2beb9b8-218e-11e4-969b-b2227cce2b54");
	   
	ProgressResource pResource("ProgressBar");
	Progress *pProgress = pResource.get(); 
	pProgress-> setSettingAutoClose(true);
	pProgress->updateProgress("Computing RANSAC on all buildings", 0, NORMAL);
	Ransac_buildings = Ransac(Segmentation::path);
	cv::Mat roof_image = cv::Mat::zeros(original_tiles_merged.size(), CV_8UC3);
		
	buildingS.resize(blobs.size());
	buildingS_inliers.resize(blobs.size());
	buildingS_outliers.resize(blobs.size());
	buildingS_plane_coefficients.resize(blobs.size());
	buldingS_number_inliers.resize(blobs.size());

	std::ofstream building_file;
	std::ofstream cont_file;
	cont_file.open (std::string(path) + "/Results/Number_of_RANSAC_applications.txt"); 
	for(int i = 0; i < blobs.size(); i++)
	{// i index is the building (blob) index
		pProgress->updateProgress("Computing RANSAC on all buildings\nBuilding "+ StringUtilities::toDisplayString(i) + " on "+ StringUtilities::toDisplayString(blobs.size()), static_cast<double>(static_cast<double>(i)/blobs.size()*100), NORMAL);
		building_file.open (std::string(path) + "/Results/Building_" + StringUtilities::toDisplayString(i)+".txt");
		building_file << 'i' << '\t' << 'j' << '\t' << 'X' << '\t' << 'Y' << '\t' << 'Z' << '\n'; 
		buildingS[i].setConstant(blobs[i].size(), 3, 0.0);
		
		// the j loop retrieves the  X, Y, Z coordinate for each pixel of all the buildings
		for(int j = 0; j < blobs[i].size(); j++) 
		{// j index is the pixel index for the single building
		 // loop on all the pixel of the SINGLE building
		    int pixel_column = blobs[i][j].x;
            int pixel_row = blobs[i][j].y;			

			double x_building =  pixel_column * dem_spacing;// xMin + pixel_column * dem_spacing // object coordinate 
			double y_building =  pixel_row * dem_spacing;// yMin + pixel_row * dem_spacing // object coordinate
			double z_building = original_tiles_merged.at<float>(pixel_row, pixel_column);//object coordinate
			
			buildingS[i](j,0) = x_building;
			buildingS[i](j,1) = y_building;
			buildingS[i](j,2) = z_building;
			 
			building_file << pixel_row+1 <<  '\t' << pixel_column+1 <<  '\t' << buildingS[i](j,0) << '\t' << buildingS[i](j,1) << '\t' << buildingS[i](j,2) << '\n'; //+1 on the imae coordinates to verify with opticks' rasters (origin is 1,1)
		}

		building_file.close();

		std::ofstream inliers_file;
		std::ofstream parameters_file;
		inliers_file.open (std::string(path) + "/Results/Inliers_building_" + StringUtilities::toDisplayString(i)+".txt");
		parameters_file.open (std::string(path) + "/Results/plane_parameters_building_" + StringUtilities::toDisplayString(i)+".txt");
		//parameters_file << "a\tb\tc\td\tmean_dist\tstd_dist\n";
		int cont = 0;
		Ransac_buildings.ransac_msg += "\n____________Building number " + StringUtilities::toDisplayString(i) +"____________\n";
		Ransac_buildings.ransac_msg += "\nITERATION NUMBER " + StringUtilities::toDisplayString(cont) +"\n";
		Ransac_buildings.ComputeModel(buildingS[i], ransac_threshold);
		
		buldingS_number_inliers[i]= Ransac_buildings.n_best_inliers_count;
		buildingS_inliers[i] = Ransac_buildings.final_inliers;
		buildingS_outliers[i] = Ransac_buildings.final_outliers;
		buildingS_plane_coefficients[i] = Ransac_buildings.final_model_coefficients;
		double inliers_percentage = static_cast<double>( (Ransac_buildings.n_best_inliers_count) ) / static_cast<double> (buildingS[i].rows());
		int inliers_so_far = Ransac_buildings.n_best_inliers_count;
		std::vector<int> old_final_outliers = Ransac_buildings.final_outliers;
		 

		// DRAWS THE ROOFS yellow
		for (int k = 0; k < Ransac_buildings.n_best_inliers_count; k++)
		{
			int pixel_row = static_cast<int>(buildingS[i](Ransac_buildings.final_inliers[k], 1) /  dem_spacing);
            int pixel_column = static_cast<int>(buildingS[i](Ransac_buildings.final_inliers[k], 0) /  dem_spacing);

			unsigned char r = 255;// unsigned char(255 * (rand()/(1.0 + RAND_MAX)));
            unsigned char g = 255;// unsigned char(255 * (rand()/(1.0 + RAND_MAX)));
            unsigned char b = 0;//unsigned char(255 * (rand()/(1.0 + RAND_MAX)));
		
			roof_image.at<cv::Vec3b>(pixel_row, pixel_column)[0] = b;
            roof_image.at<cv::Vec3b>(pixel_row, pixel_column)[1] = g;
            roof_image.at<cv::Vec3b>(pixel_row, pixel_column)[2] = r;
		}

		while (inliers_percentage < 0.90)
		{
			cont ++;
			Ransac_buildings.ransac_msg += "\nITERATION NUMBER " + StringUtilities::toDisplayString(cont) +"\n";
			Eigen::Matrix<double,  Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> building_outliers;
			building_outliers.setConstant(buildingS[i].rows() - inliers_so_far, 3, 0.0);
			
		   	//* forse il metodo va già bene così, perchè riempio la matrice deglio outlier in maniera ordinata,
			//* solo che gli indici degli inlier/outlier non sono più indicativi rispetto alla matrice di building originale, ma rispetto alla matrice di innput
			//* devo riporatre gli ID degli indici alla loro posizione originale
			for (int w = 0; w <building_outliers.rows(); w++)
			{
				building_outliers(w, 0) = buildingS[i](old_final_outliers[w], 0);
			    building_outliers(w, 1) = buildingS[i](old_final_outliers[w], 1);
			    building_outliers(w, 2) = buildingS[i](old_final_outliers[w], 2);
				
				//Ransac_buildings.ransac_msg += "\n" + StringUtilities::toDisplayString(pixel_row+1) + "\t" + StringUtilities::toDisplayString(pixel_column+1) + "\t" + StringUtilities::toDisplayString(final_outliers[w]) + "\t" + StringUtilities::toDisplayString(building_outliers(w, 0))+ "\t"+ StringUtilities::toDisplayString(building_outliers(w, 1)) + "\t" + StringUtilities::toDisplayString(building_outliers(w, 2))+"\n"; // needed for tesing (test passed at first iteration)
			}
			
//.........这里部分代码省略.........
开发者ID:RobertaRavanelli,项目名称:Opticks_GSoC2014,代码行数:101,代码来源:Segmentation.cpp

示例12: get_bboxes_

cv::Mat get_bboxes_(const cv::Mat & image, const cv::Mat & seg, int x1, int y1, int x2, int y2) {
	double max_id_;
	cv::minMaxIdx(seg, nullptr, &max_id_);
	int max_id = max_id_;

	std::vector<std::shared_ptr<Segment>> segments;
	segments.reserve(max_id);
	int nchannels = image.channels();
	cv::Size size = image.size();
	for (int i = 0; i <= max_id; i++) {
		segments.push_back(std::make_shared<UniformSegment>(i, size));
	}

	{
		AdjacencyMatrix adjacency(max_id + 1);
		for (int i = 0; i < image.rows; i++) {
			for (int j = 0; j < image.cols; j++) {
				cv::Point p(j, i);
				uint16_t id = seg.at<uint16_t>(p);
				segments[id]->addPoint(image, p);

				if (i < image.rows - 1) {
					uint16_t n = seg.at<uint16_t>(i+1, j);
					if (n != id && adjacency.get(id, n) == false) {
						adjacency.get(id, n) = true;
						segments[id]->addNeighbour(n);
						segments[n]->addNeighbour(id);
					}
				}

				if (j < image.cols - 1) {
					uint16_t n = seg.at<uint16_t>(i, j+1);
					if (n != id && adjacency.get(id, n) == false) {
						adjacency.get(id, n) = true;
						segments[id]->addNeighbour(n);
						segments[n]->addNeighbour(id);
					}
				}
			}
		}
	}

	cv::Mat bboxes_out;
	float similarity_sum = 0.f;
	for (auto & s: segments) {
		s->finalizeSetup();
	}

	//for (uint32_t i = 0; i < bboxes.rows; i++) {
		//cv::Rect truth(cv::Point(bboxes.at<int>(i, 0), bboxes.at<int>(i, 1)), cv::Point(bboxes.at<int>(i, 2), bboxes.at<int>(i, 3)));
		cv::Rect truth(cv::Point(x1, y1), cv::Point(x2, y2));
		cv::Mat mask = cv::Mat::zeros(image.size(), CV_8UC1);
		cv::rectangle(mask, truth, cv::Scalar(1), CV_FILLED);

		std::unordered_set<uint32_t> contained_segments;
		std::unordered_set<uint32_t> crossing_segments;
		for (const auto & s: segments) {
			cv::Mat masked;
			mask.copyTo(masked, s->mask);
			int count = cv::countNonZero(masked);
			if (count == s->size)
				contained_segments.insert(s->id);
			else if (count)
				crossing_segments.insert(s->id);
		}

		std::shared_ptr<Segment> s = std::make_shared<UniformSegment>(-1, image.size());
		if (contained_segments.size()) {
			for (const int & id: contained_segments) {
				s = s->merge(segments[id].get());
			}
		} else {
			s = s->merge(segments[seg.at<uint16_t>(truth.y + truth.height / 2, truth.x + truth.width)].get());
		}

		std::cout << "size: " << crossing_segments.size() << std::endl;

#ifdef DEBUG
		cv::Mat draw;
		s->mask.copyTo(draw);
		draw *= 255;
		/*for (const int & n: s->neighbours) {
			draw += segments[n]->mask * 127;
		}*/
		//cv::rectangle(draw, cv::Point(bboxes.at<int>(0, 0), bboxes.at<int>(0, 1)), cv::Point(bboxes.at<int>(0, 2), bboxes.at<int>(0, 3)), cv::Scalar(255));
		cv::namedWindow("Mask", cv::WINDOW_NORMAL);
		cv::imshow("Mask", draw);
		cv::waitKey();
#endif

		float max_sim = jaccardSimilarity(truth, cv::Rect(s->min_p, s->max_p));
#ifdef DEBUG
		std::cout << "max_sim: " << max_sim << std::endl;
#endif
		bool quit = false;
		while (quit == false) {
			quit = true;
			for (const int & n: s->neighbours) {
				std::shared_ptr<Segment> s2 = s->merge(segments[n].get());
				float sim = jaccardSimilarity(truth, cv::Rect(s2->min_p, s2->max_p));
//.........这里部分代码省略.........
开发者ID:hgaiser,项目名称:MasterThesis,代码行数:101,代码来源:main.cpp

示例13: calculate

void MapperGradAffine::calculate(
    const cv::Mat& img1, const cv::Mat& image2, cv::Ptr<Map>& res) const
{
    Mat gradx, grady, imgDiff;
    Mat img2;

    CV_DbgAssert(img1.size() == image2.size());
    CV_DbgAssert(img1.channels() == image2.channels());
    CV_DbgAssert(img1.channels() == 1 || img1.channels() == 3);

    if(!res.empty()) {
        // We have initial values for the registration: we move img2 to that initial reference
        res->inverseWarp(image2, img2);
    } else {
        img2 = image2;
    }

    // Get gradient in all channels
    gradient(img1, img2, gradx, grady, imgDiff);

    // Matrices with reference frame coordinates
    Mat grid_r, grid_c;
    grid(img1, grid_r, grid_c);

    // Calculate parameters using least squares
    Matx<double, 6, 6> A;
    Vec<double, 6> b;
    // For each value in A, all the matrix elements are added and then the channels are also added,
    // so we have two calls to "sum". The result can be found in the first element of the final
    // Scalar object.
    Mat xIx = grid_c.mul(gradx);
    Mat xIy = grid_c.mul(grady);
    Mat yIx = grid_r.mul(gradx);
    Mat yIy = grid_r.mul(grady);
    Mat Ix2 = gradx.mul(gradx);
    Mat Iy2 = grady.mul(grady);
    Mat xy = grid_c.mul(grid_r);
    Mat IxIy = gradx.mul(grady);
    A(0, 0) = sum(sum(sqr(xIx)))[0];
    A(0, 1) = sum(sum(xy.mul(Ix2)))[0];
    A(0, 2) = sum(sum(grid_c.mul(Ix2)))[0];
    A(0, 3) = sum(sum(sqr(grid_c).mul(IxIy)))[0];
    A(0, 4) = sum(sum(xy.mul(IxIy)))[0];
    A(0, 5) = sum(sum(grid_c.mul(IxIy)))[0];
    A(1, 1) = sum(sum(sqr(yIx)))[0];
    A(1, 2) = sum(sum(grid_r.mul(Ix2)))[0];
    A(1, 3) = A(0, 4);
    A(1, 4) = sum(sum(sqr(grid_r).mul(IxIy)))[0];
    A(1, 5) = sum(sum(grid_r.mul(IxIy)))[0];
    A(2, 2) = sum(sum(Ix2))[0];
    A(2, 3) = A(0, 5);
    A(2, 4) = A(1, 5);
    A(2, 5) = sum(sum(IxIy))[0];
    A(3, 3) = sum(sum(sqr(xIy)))[0];
    A(3, 4) = sum(sum(xy.mul(Iy2)))[0];
    A(3, 5) = sum(sum(grid_c.mul(Iy2)))[0];
    A(4, 4) = sum(sum(sqr(yIy)))[0];
    A(4, 5) = sum(sum(grid_r.mul(Iy2)))[0];
    A(5, 5) = sum(sum(Iy2))[0];
    // Lower half values (A is symmetric)
    A(1, 0) = A(0, 1);
    A(2, 0) = A(0, 2);
    A(2, 1) = A(1, 2);
    A(3, 0) = A(0, 3);
    A(3, 1) = A(1, 3);
    A(3, 2) = A(2, 3);
    A(4, 0) = A(0, 4);
    A(4, 1) = A(1, 4);
    A(4, 2) = A(2, 4);
    A(4, 3) = A(3, 4);
    A(5, 0) = A(0, 5);
    A(5, 1) = A(1, 5);
    A(5, 2) = A(2, 5);
    A(5, 3) = A(3, 5);
    A(5, 4) = A(4, 5);

    // Calculation of b
    b(0) = -sum(sum(imgDiff.mul(xIx)))[0];
    b(1) = -sum(sum(imgDiff.mul(yIx)))[0];
    b(2) = -sum(sum(imgDiff.mul(gradx)))[0];
    b(3) = -sum(sum(imgDiff.mul(xIy)))[0];
    b(4) = -sum(sum(imgDiff.mul(yIy)))[0];
    b(5) = -sum(sum(imgDiff.mul(grady)))[0];

    // Calculate affine transformation. We use Cholesky decomposition, as A is symmetric.
    Vec<double, 6> k = A.inv(DECOMP_CHOLESKY)*b;

    Matx<double, 2, 2> linTr(k(0) + 1., k(1), k(3), k(4) + 1.);
    Vec<double, 2> shift(k(2), k(5));
    if(res.empty()) {
        res = Ptr<Map>(new MapAffine(linTr, shift));
    } else {
        MapAffine newTr(linTr, shift);
        res->compose(newTr);
   }
}
开发者ID:23pointsNorth,项目名称:opencv_contrib,代码行数:96,代码来源:mappergradaffine.cpp

示例14: Binarize

void cds::Binarize(cv::Mat const &anImage, cv::Mat &binaryResult)
{
  binaryResult.create(anImage.size(), anImage.type());
  cv::threshold(anImage, binaryResult, 128, 255, CV_THRESH_BINARY+CV_THRESH_OTSU);
}
开发者ID:daemons2000,项目名称:ComputersDontSee,代码行数:5,代码来源:blobs.cpp

示例15: segment

cv::Mat ArmObjSegmentation::segment(cv::Mat& color_img, cv::Mat& depth_img, cv::Mat& self_mask,
                                    cv::Mat& table_mask, bool init_color_models)
{

  cv::Mat color_img_lab_uchar(color_img.size(), color_img.type());
  cv::Mat color_img_lab(color_img.size(), CV_32FC3);
  cv::cvtColor(color_img, color_img_lab_uchar, CV_BGR2HSV);
  // cv::cvtColor(color_img, color_img_lab_uchar, CV_BGR2Lab);
  color_img_lab_uchar.convertTo(color_img_lab, CV_32FC3, 1.0/255);
  cv::Mat tmp_bw(color_img.size(), CV_8UC1);
  cv::Mat bw_img(color_img.size(), CV_32FC1);
  // Convert to grayscale
  cv::cvtColor(color_img, tmp_bw, CV_BGR2GRAY);
  tmp_bw.convertTo(bw_img, CV_32FC1, 1.0/255);


#ifdef VISUALIZE_GRAPH_WEIGHTS
  cv::Mat fg_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
  cv::Mat fg_tied_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
  cv::Mat bg_tied_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
  cv::Mat bg_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
  cv::Mat wu_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
  cv::Mat wl_weights(color_img.size(), CV_32FC1, cv::Scalar(0.0));
#endif // VISUALIZE_GRAPH_WEIGHTS

  // TODO: Clean this up once we have stuff working well
  cv::Mat inv_self_mask;
  cv::bitwise_not(self_mask, inv_self_mask);
  cv::Mat much_larger_mask(self_mask.size(), CV_8UC1, cv::Scalar(255));
  cv::Mat enlarge_element(bg_enlarge_size_, bg_enlarge_size_, CV_8UC1, cv::Scalar(255));
  cv::dilate(inv_self_mask, much_larger_mask, enlarge_element);
  cv::Mat larger_mask, known_arm_mask;
  cv::Mat arm_band = getArmBand(inv_self_mask, arm_enlarge_width_, arm_shrink_width_, false,
                                larger_mask, known_arm_mask);

  // Get known arm pixels
  cv::Mat known_arm_pixels;
  color_img_lab.copyTo(known_arm_pixels, known_arm_mask);
  cv::Mat known_bg_mask = much_larger_mask - larger_mask;

  // Get known object pixels
  cv::Mat known_bg_pixels;
  color_img_lab.copyTo(known_bg_pixels, known_bg_mask);

  // Get stats for building graph
  int num_nodes = 0;
  int num_edges = 0;

  tabletop_pushing::NodeTable nt;
  for (int r = 0; r < much_larger_mask.rows; ++r)
  {
    for (int c = 0; c < much_larger_mask.cols; ++c)
    {
      if (much_larger_mask.at<uchar>(r,c) > 0)
      {
        // Add this as another node
        int cur_idx = num_nodes++;
        nt.addNode(r, c, cur_idx);
        int test_idx = nt.getIdx(r,c);
        // Check for edges to add
        // left edge
        if (c > 0 && much_larger_mask.at<uchar>(r, c-1) > 0)
        {
          num_edges++;
        }
        if (r > 0)
        {
          // Up edge
          if(much_larger_mask.at<uchar>(r-1,c) > 0)
          {
            num_edges++;
          }
        }
      }
    }
  }
  if (num_nodes < 1)
  {
    cv::Mat empty(color_img.size(), CV_8UC1, cv::Scalar(0));
    return empty;
  }

  if (!have_arm_color_model_)
  {
    std::cout << "[arm_obj_segmentation]: Building arm color model." << std::endl;
    arm_color_model_ = getGMMColorModel(known_arm_pixels, known_arm_mask, 3);
    have_arm_color_model_ = true;
  }
  if(!have_bg_color_model_)
  {
    std::cout << "[arm_obj_segmentation]: Building bg color model." << std::endl;
    bg_color_model_ = getGMMColorModel(known_bg_pixels, known_bg_mask, 5);
    have_bg_color_model_ = true;
  }

#ifdef USE_CANNY_EDGES
  cv::Mat canny_edges_8bit;
  cv::Mat canny_edges;
  cv::Canny(tmp_bw, canny_edges_8bit, 120, 250);
  canny_edges_8bit.convertTo(canny_edges, CV_32FC1, 1.0/255);
//.........这里部分代码省略.........
开发者ID:balakumar-s,项目名称:cpl,代码行数:101,代码来源:arm_obj_segmentation.cpp


注:本文中的cv::Mat::size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。