当前位置: 首页>>代码示例>>C++>>正文


C++ Mat::channels方法代码示例

本文整理汇总了C++中cv::Mat::channels方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat::channels方法的具体用法?C++ Mat::channels怎么用?C++ Mat::channels使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv::Mat的用法示例。


在下文中一共展示了Mat::channels方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Preprocess

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
  /* Convert the input image to the input image format of the network. */
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;

  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;

  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);

  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);

  /* This operation will write the separate BGR planes directly to the
   * input layer of the network because it is wrapped by the cv::Mat
   * objects in input_channels. */
  cv::split(sample_normalized, *input_channels);

  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}
开发者ID:beniz,项目名称:caffe,代码行数:39,代码来源:classification.cpp

示例2: toGrayScaleMat

void Camera::toGrayScaleMat(cv::Mat& m)
{   
    unsigned char *m_ = (unsigned char *)(m.data);
    
    for (int x = 0; x < w2; x++) {
        for (int y = 0; y < height; y++) {
            int y0, y1;

            int i = (y * w2 + x)*4;
            y0 = data[i];
            y1 = data[i + 2];
            
            i = y*m.cols*m.channels() + x*2*m.channels(); 
            m_[i + 0] = (unsigned char) (y0);
            m_[i + 1] = (unsigned char) (y1);
            
            //More clear in logic but slower solution
            //m.at<uchar>(y, (2*x)) = (unsigned char) (y0);
            //m.at<uchar>(y, (2*x)+1) = (unsigned char) (y1);
        }
    }
}
开发者ID:sodeq,项目名称:BBxM-Robot,代码行数:22,代码来源:libcam.cpp

示例3: dest

QImage Tools::Mat2QImage(cv::Mat const& src)
{
  QImage dest(src.cols, src.rows, QImage::Format_ARGB32);
  const float scale = 255.0;
  if (src.depth() == CV_8U) {
    if (src.channels() == 1) {
      for (int i = 0; i < src.rows; ++i) {
	for (int j = 0; j < src.cols; ++j) {
	  int level = src.at<quint8>(i, j);
	  dest.setPixel(j, i, qRgb(level, level, level));
	}
      }
    } else if (src.channels() == 3) {
      for (int i = 0; i < src.rows; ++i) {
	for (int j = 0; j < src.cols; ++j) {
	  cv::Vec3b bgr = src.at<cv::Vec3b>(i, j);
	  dest.setPixel(j, i, qRgb(bgr[2], bgr[1], bgr[0]));
	}
      }
    }
  } else if (src.depth() == CV_32F) {
    if (src.channels() == 1) {
      for (int i = 0; i < src.rows; ++i) {
	for (int j = 0; j < src.cols; ++j) {
	  int level = scale * src.at<float>(i, j);
	  dest.setPixel(j, i, qRgb(level, level, level));
	}
      }
    } else if (src.channels() == 3) {
      for (int i = 0; i < src.rows; ++i) {
	for (int j = 0; j < src.cols; ++j) {
	  cv::Vec3f bgr = scale * src.at<cv::Vec3f>(i, j);
	  dest.setPixel(j, i, qRgb(bgr[2], bgr[1], bgr[0]));
	}
      }
    }
  }
  return dest;
}
开发者ID:fabware,项目名称:LicensePlateRecognition,代码行数:39,代码来源:Tools.cpp

示例4: getProba

void NccHisto::getProba(const cv::Mat ncc, const cv::Mat sumstdev, cv::Mat proba)
{
	if (lut==0) loadHistogram();
	assert(lut);
	if (lut==0) return;
	assert(ncc.channels()==1);
	assert(sumstdev.channels()==1);
	assert(ncc.cols == proba.cols && ncc.rows==proba.rows);
	assert(proba.channels()==1);

	const int w=ncc.cols;
	const int h=ncc.rows;

	for (int y=0; y<h;y++) {
		float *dst = proba.ptr<float>(y);
		const float *src = ncc.ptr<float>(y);
		const float *sum = sumstdev.ptr<float>(y);
		for (int x=0;x<w;x++) {
			dst[x] = lut[lut_idx(src[x], sum[x])];
		}
	}
}
开发者ID:2php,项目名称:emvisi2,代码行数:22,代码来源:emvisi2.cpp

示例5: crosscorrelation

cv::Mat crosscorrelation(const cv::Mat& A, const cv::Mat& B)
{
  if (A.channels() != 2 || B.channels() != 2)
  {
    throw CustomException("crosscorrelation: Must be two two-channel images.");
  }

  cv::Mat aPadded;
  cv::Mat bPadded;
  cv::Mat doubleA, doubleB;
/*
  //The following expands the image to an optimal size in order to be the fourier transform efficient
   * It is not used right now, since the image is double-sized to apply crosscorrelation properly
  int m = getOptimalDFTSize( A.rows );
  int n = getOptimalDFTSize( A.cols ); // on the border add zero values
  copyMakeBorder(A, aPadded, 0, m - A.rows, 0, n - A.cols, BORDER_CONSTANT, Scalar(0,0));
  copyMakeBorder(B, bPadded, 0, p - B.rows, 0, q - B.cols, BORDER_CONSTANT, Scalar(0,0));
*/
  //REMEMBER!!  The result of the correlation is twice the size of the input arrays!
  //There must be enough space for the overlapping of both functions
  cv::copyMakeBorder(A, aPadded, 0, A.rows, 0, A.cols, cv::BORDER_CONSTANT, cv::Scalar(0.0, 0.0));
  cv::copyMakeBorder(B, bPadded, 0, B.rows, 0, B.cols, cv::BORDER_CONSTANT, cv::Scalar(0.0, 0.0));

  //CAUTION!! Know differences between: DFT_COMPLEX_OUTPUT, DFT_SCALE, DFT_REAL_OUTPUT
  cv::dft(aPadded, aPadded, cv::DFT_COMPLEX_OUTPUT + cv::DFT_SCALE);
  cv::dft(bPadded, bPadded, cv::DFT_COMPLEX_OUTPUT + cv::DFT_SCALE);

  cv::Mat C, tmpC;
  //CAUTION!! Know differences between: DFT_COMPLEX_OUTPUT, DFT_SCALE, DFT_REAL_OUTPUT
  bool conjugateB(true);  //optional parameter, false by default :: set this parameter to false to turn this operation into convolution
  cv::mulSpectrums(aPadded, bPadded.mul(aPadded.rows * aPadded.cols), tmpC, cv::DFT_COMPLEX_OUTPUT, conjugateB);

  //Note None of dft and idft scales the result by default.
  //So, you should pass DFT_SCALE to one of dft or idft explicitly to make these transforms mutually inverse.
  cv::idft(tmpC, C, cv::DFT_COMPLEX_OUTPUT);

  //REMEMBER NORMALIZE!! When calculating OTF, the value at origin must be equal to unity!! energy conservation
  return C;
}
开发者ID:dguerra,项目名称:pdmaster,代码行数:39,代码来源:ToolBox.cpp

示例6: Apply

void MeanTransformer::Apply(size_t id, cv::Mat &mat)
{
    UNUSED(id);
    assert(m_meanImg.size() == cv::Size(0, 0) ||
           (m_meanImg.size() == mat.size() &&
            m_meanImg.channels() == mat.channels()));

    // REVIEW alexeyk: check type conversion (float/double).
    if (m_meanImg.size() == mat.size())
    {
        mat = mat - m_meanImg;
    }
}
开发者ID:JohnCraigPublic,项目名称:CNTK,代码行数:13,代码来源:ImageTransformers.cpp

示例7: if

void cv::DisplayHelper::display(const cv::Mat& oInputImg, const cv::Mat& oDebugImg, const cv::Mat& oOutputImg, size_t nIdx) {
    CV_Assert(!oInputImg.empty() && (oInputImg.type()==CV_8UC1 || oInputImg.type()==CV_8UC3 || oInputImg.type()==CV_8UC4));
    CV_Assert(!oDebugImg.empty() && (oDebugImg.type()==CV_8UC1 || oDebugImg.type()==CV_8UC3 || oDebugImg.type()==CV_8UC4) && oDebugImg.size()==oInputImg.size());
    CV_Assert(!oOutputImg.empty() && (oOutputImg.type()==CV_8UC1 || oOutputImg.type()==CV_8UC3 || oOutputImg.type()==CV_8UC4) && oOutputImg.size()==oInputImg.size());
    cv::Mat oInputImgBYTE3, oDebugImgBYTE3, oOutputImgBYTE3;
    if(oInputImg.channels()==1)
        cv::cvtColor(oInputImg,oInputImgBYTE3,cv::COLOR_GRAY2BGR);
    else if(oInputImg.channels()==4)
        cv::cvtColor(oInputImg,oInputImgBYTE3,cv::COLOR_BGRA2BGR);
    else
        oInputImgBYTE3 = oInputImg;
    if(oDebugImg.channels()==1)
        cv::cvtColor(oDebugImg,oDebugImgBYTE3,cv::COLOR_GRAY2BGR);
    else if(oDebugImg.channels()==4)
        cv::cvtColor(oDebugImg,oDebugImgBYTE3,cv::COLOR_BGRA2BGR);
    else
        oDebugImgBYTE3 = oDebugImg;
    if(oOutputImg.channels()==1)
        cv::cvtColor(oOutputImg,oOutputImgBYTE3,cv::COLOR_GRAY2BGR);
    else if(oOutputImg.channels()==4)
        cv::cvtColor(oOutputImg,oDebugImgBYTE3,cv::COLOR_BGRA2BGR);
    else
        oOutputImgBYTE3 = oOutputImg;
    cv::Size oCurrDisplaySize;
    if(m_oMaxDisplaySize.area()>0 && (oOutputImgBYTE3.cols>m_oMaxDisplaySize.width || oOutputImgBYTE3.rows>m_oMaxDisplaySize.height)) {
        if(oOutputImgBYTE3.cols>m_oMaxDisplaySize.width && oOutputImgBYTE3.cols>oOutputImgBYTE3.rows)
            oCurrDisplaySize = cv::Size(m_oMaxDisplaySize.width,m_oMaxDisplaySize.width*(oOutputImgBYTE3.rows/oOutputImgBYTE3.cols));
        else
            oCurrDisplaySize = cv::Size(m_oMaxDisplaySize.height*(oOutputImgBYTE3.cols/oOutputImgBYTE3.rows),m_oMaxDisplaySize.height);
        cv::resize(oInputImgBYTE3,oInputImgBYTE3,oCurrDisplaySize);
        cv::resize(oDebugImgBYTE3,oDebugImgBYTE3,oCurrDisplaySize);
        cv::resize(oOutputImgBYTE3,oOutputImgBYTE3,oCurrDisplaySize);
    }
    else
        oCurrDisplaySize = oOutputImgBYTE3.size();
    std::stringstream sstr;
    sstr << "Input #" << nIdx;
    putText(oInputImgBYTE3,sstr.str(),cv::Scalar_<uchar>(0,0,255));
    putText(oDebugImgBYTE3,"Debug",cv::Scalar_<uchar>(0,0,255));
    putText(oOutputImgBYTE3,"Output",cv::Scalar_<uchar>(0,0,255));
    if(m_bFirstDisplay) {
        putText(oDebugImgBYTE3,"[Press space to continue]",cv::Scalar_<uchar>(0,0,255),true,cv::Point2i(oDebugImgBYTE3.cols/2-100,15),1,1.0);
        m_bFirstDisplay = false;
    }
    std::lock_guard<std::mutex> oLock(m_oEventMutex);
    const cv::Point2i& oDbgPt = m_oLatestMouseEvent.oPosition;
    const cv::Size& oLastDbgSize = m_oLatestMouseEvent.oDisplaySize;
    if(oDbgPt.x>=0 && oDbgPt.y>=0 && oDbgPt.x<oLastDbgSize.width*3 && oDbgPt.y<oLastDbgSize.height) {
        const cv::Point2i oDbgPt_rescaled(int(oCurrDisplaySize.width*(float(oDbgPt.x%oLastDbgSize.width)/oLastDbgSize.width)),int(oCurrDisplaySize.height*(float(oDbgPt.y)/oLastDbgSize.height)));
        cv::circle(oInputImgBYTE3,oDbgPt_rescaled,5,cv::Scalar(255,255,255));
        cv::circle(oDebugImgBYTE3,oDbgPt_rescaled,5,cv::Scalar(255,255,255));
        cv::circle(oOutputImgBYTE3,oDbgPt_rescaled,5,cv::Scalar(255,255,255));
    }
    cv::Mat displayH;
    cv::hconcat(oInputImgBYTE3,oDebugImgBYTE3,displayH);
    cv::hconcat(displayH,oOutputImgBYTE3,displayH);
    cv::imshow(m_sDisplayName,displayH);
    m_oLastDisplaySize = oCurrDisplaySize;
}
开发者ID:imagedl,项目名称:litiv,代码行数:59,代码来源:OpenCVUtils.cpp

示例8: imshowAllChannels

void imshowAllChannels(const std::string winname, cv::Mat img)
{
	std::vector<cv::Mat> imgs;
	cv::split(img, imgs);


	for (int i = 0; i < img.channels(); i++)
	{
		std::stringstream ss;
		ss << winname <<":" <<i;
		cv::imshow(ss.str(), imgs[i]);
	}
}
开发者ID:DentonW,项目名称:CurveSnap,代码行数:13,代码来源:cvx.cpp

示例9: if

QImage QNode::cvtCvMat2QImage(const cv::Mat & image)
{
        QImage qtemp;
        if(!image.empty() && image.depth() == CV_8U)
        {
                const unsigned char * data = image.data;
                qtemp = QImage(image.cols, image.rows, QImage::Format_RGB32);
                for(int y = 0; y < image.rows; ++y, data += image.cols*image.elemSize())
                {
                        for(int x = 0; x < image.cols; ++x)
                        {
                                QRgb * p = ((QRgb*)qtemp.scanLine (y)) + x;
                                *p = qRgb(data[x * image.channels()+2], data[x * image.channels()+1], data[x * image.channels()]);
                        }
                }
        }
        else if(!image.empty() && image.depth() != CV_8U)
        {
                printf("Wrong image format, must be 8_bits\n");
        }
        return qtemp;
}
开发者ID:privateSpace,项目名称:projectPhoenix,代码行数:22,代码来源:qnode.cpp

示例10: filter

void drwnLBPFilterBank::filter(const cv::Mat& img, std::vector<cv::Mat>& response) const
{
    // check input
    DRWN_ASSERT(img.data != NULL);
    if (response.empty()) {
        response.resize(this->numFilters());
    }
    DRWN_ASSERT(response.size() == this->numFilters());

    if (img.channels() != 1) {
        cv::Mat tmp(img.rows, img.cols, img.depth());
        cv::cvtColor(img, tmp, CV_RGB2GRAY);
        return filter(tmp, response);
    }
    DRWN_ASSERT_MSG(img.depth() == CV_8U, "image must be 8-bit");

    // allocate output channels as 32-bit floating point
    for (unsigned i = 0; i < response.size(); i++) {
        if ((response[i].rows == img.rows) && (response[i].cols == img.cols) &&
            (response[i].depth() == CV_32F) && (response[i].channels() == 1)) {
            response[i].setTo(0.0f);
        } else {
            response[i] = cv::Mat::zeros(img.rows, img.cols, CV_32FC1);
        }
    }

    for (int y = 0; y < img.rows; y++) {

        const unsigned char *p = img.ptr<const unsigned char>(y);
        const unsigned char *p_prev = (y == 0) ? p : img.ptr<const unsigned char>(y - 1);
        const unsigned char *p_next = (y == img.rows - 1) ? p : img.ptr<const unsigned char>(y + 1);

        // 4-connected neighbourhood
        for (int x = 0; x < img.cols; x++) {
            if (p[x] > p_prev[x]) response[0].at<float>(y, x) = 1.0f;
            if ((x < img.cols - 1) && (p[x] > p[x + 1])) response[1].at<float>(y, x) = 1.0f;
            if (p[x] > p_next[x]) response[2].at<float>(y, x) = 1.0f;
            if ((x > 0) && (p[x] > p[x - 1])) response[3].at<float>(y, x) = 1.0f;
        }

        // 8-connected neighbourhood
        if (_b8Neighbourhood) {
            for (int x = 0; x < img.cols; x++) {
                if ((p[x] > p_prev[x]) && (x < img.cols - 1) && (p[x] > p[x + 1])) response[4].at<float>(y, x) = 1.0f;
                if ((x < img.cols - 1) && (p[x] > p[x + 1]) && (p[x] > p_next[x])) response[5].at<float>(y, x) = 1.0f;
                if ((p[x] > p_next[x]) && (x > 0) && (p[x] > p[x - 1])) response[6].at<float>(y, x) = 1.0f;
                if ((x > 0) && (p[x] > p[x - 1]) && (p[x] > p_prev[x])) response[7].at<float>(y, x) = 1.0f;
            }
        }
    }
}
开发者ID:MLDL,项目名称:drwn,代码行数:51,代码来源:drwnLBPFilterBank.cpp

示例11: retVal

cv::Mat
Auvsi_Recognize::doClustering( cv::Mat input, int numClusters, bool colored = true )
{
	#ifdef TWO_CHANNEL
		typedef cv::Vec<T, 2> VT;
	#else
		typedef cv::Vec<T, 3> VT;
	#endif
	
	typedef cv::Vec<int, 1> IT;
	
	const int NUMBER_OF_ATTEMPTS = 5;
	int inputSize = input.rows*input.cols;

	// Create destination image
	cv::Mat retVal( input.size(), input.type() );

	// Format input to k-means
	cv::Mat kMeansData( input );
	kMeansData = kMeansData.reshape( input.channels(), inputSize );

	// For the output of k-means
	cv::Mat labels( inputSize, 1, CV_32S );
	cv::Mat centers( numClusters, 1, input.type() );

	// Perform the actual k-means clustering
	// POSSIBLE FLAGS: KMEANS_PP_CENTERS KMEANS_RANDOM_CENTERS
	cv::kmeans( kMeansData, numClusters, labels, cv::TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0 ), NUMBER_OF_ATTEMPTS, cv::KMEANS_RANDOM_CENTERS, &centers );

	// Label the image according to the clustering results
	cv::MatIterator_<VT> retIterator = retVal.begin<VT>();
	cv::MatIterator_<VT> retEnd = retVal.end<VT>();

	cv::MatIterator_<IT> labelIterator = labels.begin<IT>();

	for( ; retIterator != retEnd; ++retIterator, ++labelIterator )
	{
		VT data = centers.at<VT>( cv::saturate_cast<int>((*labelIterator)[0]), 0);

		#ifdef TWO_CHANNEL
			*retIterator = VT( cv::saturate_cast<T>(data[0]), cv::saturate_cast<T>(data[1]) );//, cv::saturate_cast<T>(data[2]) );
		#else
			*retIterator = VT( cv::saturate_cast<T>(data[0]), cv::saturate_cast<T>(data[1]), cv::saturate_cast<T>(data[2]) );
		#endif
	}

	if( colored )
		return retVal;
	else
		return labels;
}
开发者ID:sharma16aug,项目名称:ucsd-auvsi-uas,代码行数:51,代码来源:Auvsi_Recognize.cpp

示例12: cvThresholdOtsu

void SkinSplit::cvThresholdOtsu(cv::Mat& src, cv::Mat& dst)
{
    assert(src.channels() == 1);
    int hist[256] = {0};
    double pro_hist[256] = {0.0};

    int height =  src.rows;
    int width = src.cols;
    //统计每个灰度的数量
    for(int i=0;i<width;i++)
    {
        for(int j=0;j<height;j++)
        {
            int temp = src.at<uchar>(i,j);
            hist[temp]++;
        }
    }

    //计算每个灰度级占图像中的概率
    for(int i=0;i<256;i++)
    {
        pro_hist[i] = (double)hist[i]/(double)(width*height);
    }

    //计算平均灰度
    double avgPixel = 0.0;
    for(int i=0;i<256;i++)
    {
        avgPixel += i*pro_hist[i];
    }

    int threshold=0;
    double maxVariance = 0;
    double w =0,u=0;
    for(int i=0;i<256;i++)
    {
        w+=pro_hist[i];
        u+=i*pro_hist[i];

        double t = avgPixel*w -u;
        double variance = t*t/(w*(1-w));
        if(variance>maxVariance)
        {
            maxVariance = variance;
            threshold = i;
        }
    }

    cv::threshold(src,dst,threshold,255,CV_THRESH_BINARY);

}
开发者ID:lkpjj,项目名称:SkinSplit,代码行数:51,代码来源:skinsplit.cpp

示例13: set_img

void GUI::set_img(const cv::Mat &frame, cv::Mat &result, Controller &controller) {

    /** result == controller.current_image_to_display. */

    // Convert controller.current_image_to_process (as src) to RGB(A) controller.current_image_to_display (as dst).
    convert_image_to_gui_output_format(frame, result) ;


    if (widget_current_image_to_display != NULL) {

        delete widget_current_image_to_display ;
    }

    widget_current_image_to_display = Gtk::manage(new Gtk::Image());

    widget_current_image_to_display->clear() ;

    if (result.depth() != CV_8U) { // This desnt' should be !

        result.assignTo(result, CV_8U) ;

    }

    // We resize the original image every time we display it.
    // It's better like this because the image is resized (if needed) only one time per changement
    // Not always resizing the same image.

    //controller.resize_image_to_display(result) ;

    if (controller.get_image_size_gt_layout()) {
        cv::resize(result, result, cv::Size(controller.display_image_size.first, controller.display_image_size.second), 1.0, 1.0, cv::INTER_LINEAR) ;
    }


    IplImage iplimg = _IplImage(result) ;

    widget_current_image_to_display->set(Gdk::Pixbuf::create_from_data( (const guint8 *) iplimg.imageData,
                                         Gdk::COLORSPACE_RGB,
                                         (result.channels() == 4),
                                         iplimg.depth,
                                         iplimg.width,
                                         iplimg.height,
                                         iplimg.widthStep)) ;



    widget_current_image_to_display->show() ;

    display_area.put(*widget_current_image_to_display, controller.current_image_position.first, controller.current_image_position.second) ;

}
开发者ID:mrcyberfighter,项目名称:Edip,代码行数:51,代码来源:Edip_gui_private.cpp

示例14: execute_current

    cv::Mat CatOP::execute_current(const cv::Mat& img,
                                    const vector<string>& fields) {
        string key = get_key(fields);
        cout << key << " " << img.cols << " " << img.rows
             << " " << img.channels() << endl;

        std::size_t last_dot = key.rfind(".");
        string ext;
        if (last_dot != string::npos) {
            ext = key.substr(last_dot);
        }

        vector<unsigned char> img_content;
        cv::imencode(ext, img, img_content);
        string base64_string = base64_encode(img_content.data(), img_content.size());

        char const* term = std::getenv("TERM");
        char const* tmux = std::getenv("TMUX");
        bool in_tmux = false;
        if (term != NULL && tmux != NULL) {
            if (strncmp(term, "xterm", 5) == 0
                || strncmp(term, "screen", 6) == 0) {
                if (tmux[0] > 0) {
                    in_tmux = true;
                }
            }
        }

        if (in_tmux) {
            std::cout << "\033Ptmux;\033\033]";
        } else {
            std::cout << "\033]";
        }

        const unsigned char * key_ptr =
            reinterpret_cast<const unsigned char*>(key.data());
        std::cout << "1337;File=name="
                  << base64_encode(key_ptr, key.length())
                  << ";size=" << img_content.size()
                  << ";inline=1:" << base64_string;

        if (in_tmux) {
            std::cout << "\a\033\\";
        } else {
            std::cout << "\a";
        }

        std::cout << std::endl;

        return img;
    }
开发者ID:jeoygin,项目名称:gadget,代码行数:51,代码来源:op_cat.cpp

示例15: FuyangCalibra

	float FuyangCalibra(const cv::Mat& in)
		{
			if(in.empty()||in.channels()!=1)
				return 0;
			float r=in.rows;
			float c=in.cols;
			float start_y=c-1;
			float end_y=1;;
			for(int i=0;i<r;i++)
			{
				const uchar* dataI=in.ptr<uchar>(i);
				for(int j=0;j<c;j++)
				{
					if(dataI[j]==0)
						continue;
					else
					{
						if(start_y>i)
						{
							start_y=i;
						}
						if(end_y<i)
						{
							end_y=i;
						}
					}//if

				}//for2 loop
			}//for1 loop

			start_y=(r-1)/2- start_y;
			end_y=(r-1)/2- end_y;
			float A=2*start_y*tan(CHUIZHI)/r;
			float B=2*end_y*tan(CHUIZHI)/r;
			float C=float(DELTA_Y)/float(HEIGHT);
			ROS_INFO("A=  %f  ,B= %f  C=%f ",A,B,C);
			float _a=A-B-A*B*C;
			float _b=A*C+B*C;
			float _c=A-B-C;
			float x1=(-_b+sqrt(_b*_b-4*_a*_c))/(2*_a);
			float x2=(-_b-sqrt(_b*_b-4*_a*_c))/(2*_a);
			float arcx=atan(x1)*180/CV_PI;
			ROS_INFO("a=  %f  ,b= %f   ,c=   %f, ",_a,_b,_c);
			ROS_INFO("start_y=  %f  ,end_y= %f   ,x1=   %f,,x2=   %f ",start_y,end_y,x1,x2);
			ROS_INFO("x=   %f,arcx=   %f ",atan(x1),arcx);
			return arcx;




		};///getPointset();待优化:分类记录点或者去除孤立区域
开发者ID:shylockwan,项目名称:myROS,代码行数:51,代码来源:mycalibra.cpp


注:本文中的cv::Mat::channels方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。