当前位置: 首页>>代码示例>>C++>>正文


C++ Mat::mul方法代码示例

本文整理汇总了C++中cv::Mat::mul方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat::mul方法的具体用法?C++ Mat::mul怎么用?C++ Mat::mul使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cv::Mat的用法示例。


在下文中一共展示了Mat::mul方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: gaussianCorrelation

// Evaluates a Gaussian kernel with bandwidth SIGMA for all relative shifts between input images X and Y, which must both be MxN. They must    also be periodic (ie., pre-processed with a cosine window).
cv::Mat KCFTracker::gaussianCorrelation(cv::Mat x1, cv::Mat x2)
{
    using namespace FFTTools;
    cv::Mat c = cv::Mat( cv::Size(size_patch[1], size_patch[0]), CV_32F, cv::Scalar(0) );
    // HOG features
    if (_hogfeatures) {
        cv::Mat caux;
        cv::Mat x1aux;
        cv::Mat x2aux;
        for (int i = 0; i < size_patch[2]; i++) {
            x1aux = x1.row(i);   // Procedure do deal with cv::Mat multichannel bug
            x1aux = x1aux.reshape(1, size_patch[0]);
            x2aux = x2.row(i).reshape(1, size_patch[0]);
            cv::mulSpectrums(fftd(x1aux), fftd(x2aux), caux, 0, true); 
            caux = fftd(caux, true);
            rearrange(caux);
            caux.convertTo(caux,CV_32F);
            c = c + real(caux);
        }
    }
    // Gray features
    else {
        cv::mulSpectrums(fftd(x1), fftd(x2), c, 0, true);
        c = fftd(c, true);
        rearrange(c);
        c = real(c);
    }
    cv::Mat d; 
    cv::max(( (cv::sum(x1.mul(x1))[0] + cv::sum(x2.mul(x2))[0])- 2. * c) / (size_patch[0]*size_patch[1]*size_patch[2]) , 0, d);

    cv::Mat k;
    cv::exp((-d / (sigma * sigma)), k);
    return k;
}
开发者ID:39M,项目名称:Matrice100,代码行数:35,代码来源:kcftracker.cpp

示例2:

// Ridgeness operator: F_vv.
//	REF [book] >> section 9.1.2 (p. 254) in "Digital and Medical Image Processing", 2005.
//	REF [book] >> Figure 9.10 & 9.11 (p. 260) in "Digital and Medical Image Processing", 2005.
cv::Mat ImageFilter::RidgenessOperator::operator()(const cv::Mat& img, const std::size_t apertureSize, const double sigma) const
{
	cv::Mat Fx, Fy, Fxx, Fyy, Fxy;
	ImageFilter::computeDerivativesOfImage(img, apertureSize, sigma, Fx, Fy, Fxx, Fyy, Fxy);

	// Compute Fvv.
	// REF [book] >> p. 255 ~ 256 in "Digital and Medical Image Processing", 2005.
	const cv::Mat Fx2(Fx.mul(Fx)), Fy2(Fy.mul(Fy));
	return (Fy2.mul(Fxx) - 2 * Fx.mul(Fy).mul(Fxy) + Fx2.mul(Fyy)) / (Fx2 + Fy2);
}
开发者ID:sangwook236,项目名称:sangwook-library,代码行数:13,代码来源:ImageFilter.cpp

示例3: magnitude

static void magnitude(const cv::Mat& I_X, const cv::Mat& I_Y, cv::Mat& I_mag)
{
	CV_Assert(I_X.type() == CV_64F && I_X.type() == I_Y.type());

	I_mag = I_X.mul(I_X) + I_Y.mul(I_Y);
	int s = I_mag.rows * I_mag.cols;
	double* p = (double*)I_mag.data;
	for (int i = 0; i < s; ++i) {
		*p = cv::sqrt(*p);
		p++;
	}
}
开发者ID:cmkyec,项目名称:ScSPM,代码行数:12,代码来源:denseSift.cpp

示例4: filterSingleChannel

cv::Mat GuidedFilterMono::filterSingleChannel(const cv::Mat &p) const
{
    cv::Mat mean_p = boxfilter(p, r);
    cv::Mat mean_Ip = boxfilter(I.mul(p), r);
    cv::Mat cov_Ip = mean_Ip - mean_I.mul(mean_p); // this is the covariance of (I, p) in each local patch.

    cv::Mat a = cov_Ip / (var_I + eps); // Eqn. (5) in the paper;
    cv::Mat b = mean_p - a.mul(mean_I); // Eqn. (6) in the paper;

    cv::Mat mean_a = boxfilter(a, r);
    cv::Mat mean_b = boxfilter(b, r);

    return mean_a.mul(I) + mean_b;
}
开发者ID:drb8w,项目名称:StereoVision2015,代码行数:14,代码来源:guidedfilter.cpp

示例5: computeWeights

void computeWeights(const cv::Mat &imagePatch, const spatiogram &qTarget, const spatiogram &pCurrent,
                    const cv::Mat &w, cv::Mat &weights){

    CV_Assert(qTarget.bins==pCurrent.bins);
    cv::Mat sqco;
    cv::divide(qTarget.cd,pCurrent.cd,sqco);
    cv::sqrt(sqco, sqco);
    cv::Mat rel = w.mul( sqco );
    std::vector<cv::Mat> weightC;
    cv::Mat tc =cv::Mat::zeros(imagePatch.rows, imagePatch.cols, CV_64FC1);

    int n = 256/qTarget.bins;
    std::vector<double> bins;
    linspace(bins, 0, 256, n);
    int m = pCurrent.bins/imagePatch.channels();
    for (int l=0; l<imagePatch.channels(); l++){
        for (int j=0; j<m; j++){
            cv::Mat temp;
            binelements(imagePatch, bins, l, j, temp);
            tc = tc + (rel.at<double>(0,l*m+j))*temp;
        }
        weightC.push_back(qTarget.C*tc);
    }
    mat3min( weightC, weights );
    //weights=weightC[0];
}
开发者ID:juanmanpr,项目名称:trackingTest,代码行数:26,代码来源:spatiogram.cpp

示例6: Frobenius

double Matrix::Frobenius(cv::Mat A) {
  CV_Assert(A.size != 0);
  double frobenius;
  cv::Mat square_A;
  square_A = A.mul(A);
  frobenius = sqrt(cv::sum(square_A)[0]);
  return frobenius;
}
开发者ID:MozhiJiawei,项目名称:seam_traking,代码行数:8,代码来源:Matrix.cpp

示例7: bhattacharyya

double Descriptor::bhattacharyya(cv::Mat k, cv::Mat q)
{
    cv::normalize(k, k, 1, 0, cv::NORM_L1);
    cv::normalize(q, q, 1, 0, cv::NORM_L1);
    
    cv::Mat temp = k.mul(q);
    sqrt(temp, temp);
    
    return (double)sqrt(1 - cv::sum(temp)[0]);
    // sqrt(1-sum(sqrt(k.*q)))
}
开发者ID:asolis,项目名称:vivaReID,代码行数:11,代码来源:descriptor.cpp

示例8: PCs

// Compute 3D object (shape/texture/expression) from weights, given 3DMM basis (MU, PCs, EV). Ouput size Vx3.
//       The input vector "weight" is vertical, with float numbers
cv::Mat BaselFaceEstimator::coef2object(cv::Mat weight, cv::Mat MU, cv::Mat PCs, cv::Mat EV){
	int M = weight.rows;
	Mat tmpShape;
	if (M == 0) 
		tmpShape = MU.clone();
	else {
		Mat subPC = PCs(Rect(0,0,M,PCs.rows));
		Mat subEV = EV(Rect(0,0,1,M));
		tmpShape = MU + subPC * weight.mul(subEV);
	}
	return tmpShape.reshape(1,tmpShape.rows/3);
}
开发者ID:whztt07,项目名称:extreme_3d_faces,代码行数:14,代码来源:BaselFaceEstimator.cpp

示例9: bhattacharyya

// The bhattacharyya distance between vector and vector q;
float ReidDescriptor::bhattacharyya(cv::Mat k, cv::Mat q)
{
	cv::normalize(k, k, 1, 0, cv::NORM_L1);
	cv::normalize(q, q, 1, 0, cv::NORM_L1);

	//show the histograms
	//drawHist("hist1", k);
	//drawHist("hist2", q);

	cv::Mat temp = k.mul(q);
	sqrt(temp, temp);

	return (float)sqrt(1 - cv::sum(temp)[0]); // sqrt(1-sum(sqrt(k.*q)))
}
开发者ID:asolis,项目名称:vivaReID,代码行数:15,代码来源:ReidDescriptor.cpp

示例10: si_filter

void Metric::si_filter(cv::Mat& src, cv::Mat& si_filtered, cv::Mat& hfiltered,  cv::Mat& vfiltered, int len){
	
	float filterMask[len];
	float filterA [len][len];

	getFilterMask(len, filterMask);
	for(int i=0; i<len; i++){
		for(int j=0; j<len; j++){
			filterA[i][j] = filterMask[i];
		}
	}
	cv::Mat kernel = cv::Mat(len, len, CV_32F, &filterA);
	cv::Mat tmp;

	cv::filter2D(src, hfiltered, -1, kernel);
	cv::filter2D(src, vfiltered, -1, kernel.t());

	cv::Mat h2 = hfiltered.mul(hfiltered);
	cv::Mat v2 = vfiltered.mul(vfiltered);

	cv::add(h2,v2, tmp); 
	cv::sqrt(tmp, si_filtered);	 
}
开发者ID:grishnagkh,项目名称:vqmetric,代码行数:23,代码来源:Metric.cpp

示例11: Response

//===========================================================================
void MPatch::Response(cv::Mat &im,cv::Mat &resp)
{
  assert((im.type() == CV_32F) && (resp.type() == CV_64F));
  assert((im.rows >= _h) && (im.cols >= _w));
  int h = im.rows - _h + 1, w = im.cols - _w + 1;
  if(resp.rows != h || resp.cols != w)resp.create(h,w,CV_64F);
  if(res_.rows != h || res_.cols != w)res_.create(h,w,CV_64F);
  if(_p.size() == 1){_p[0].Response(im,resp); sum2one(resp);}
  else{
    resp = cvScalar(1.0);
    for(int i = 0; i < (int)_p.size(); i++){
      _p[i].Response(im,res_); sum2one(res_); resp = resp.mul(res_);
    }
    sum2one(resp); 
  }return;
}
开发者ID:Belial2010,项目名称:leapFaceTracker,代码行数:17,代码来源:Patch.cpp

示例12: apply

        void apply(const cv::Mat& A, cv::Mat &B)
        {
            Sobel(A, grad_x, ddepth, 1, 0, kernel, scale, delta, cv::BORDER_DEFAULT);
            Sobel(A, grad_y, ddepth, 0, 1, kernel, scale, delta, cv::BORDER_DEFAULT);

            Sobel(grad_x, d_xx, ddepth, 1, 0, kernel, scale, delta, cv::BORDER_DEFAULT);
            Sobel(grad_x, d_xy, ddepth, 0, 1, kernel, scale, delta, cv::BORDER_DEFAULT);
            Sobel(grad_y, d_yy, ddepth, 0, 1, kernel, scale, delta, cv::BORDER_DEFAULT);

            diskr = (((d_xx - d_yy) / 2.0).mul(((d_xx - d_yy) / 2.0)) + d_xy.mul(d_xy));
            sqrt(diskr, root);
            largeC = (d_xx + d_yy) / 2.0 + root;
            smallC = (d_xx + d_yy) / 2.0 - root;

            switch (output)
            {
                case picDx:
                    normalize(grad_x, B, 0, 1, CV_MINMAX);
                    break;
                case picDy:
                    normalize(grad_y, B, 0, 1, CV_MINMAX);
                    break;
                case picDxx:
                    normalize(d_xx, B, 0, 1, CV_MINMAX);
                    break;
                case picDxy:
                    normalize(d_xy, B, 0, 1, CV_MINMAX);
                    break;
                case picDyy:
                    normalize(d_yy, B, 0, 1, CV_MINMAX);
                    break;
                case picEVSmall:
                    normalize(smallC, B, 0, 1, CV_MINMAX);
                    break;
                case picEVLarge:
                    normalize(largeC, B, 0, 1, CV_MINMAX);
                    break;
                case picDerivInput:
                default:
                    B = A;
                    break;
            }
        }
开发者ID:garykl,项目名称:zweiHochX,代码行数:43,代码来源:FiltDerivatives.hpp

示例13: triangulateFromVp

void Triangulator::triangulateFromVp(cv::Mat &vp, cv::Mat &xyz){

    // Solve for xyzw using determinant tensor
    cv::Mat C = determinantTensor;
    std::vector<cv::Mat> xyzw(4);
    for(unsigned int i=0; i<4; i++){
//        xyzw[i].create(vp.size(), CV_32F);
        xyzw[i] = C.at<float>(cv::Vec4i(i,0,1,1)) - C.at<float>(cv::Vec4i(i,2,1,1))*uc - C.at<float>(cv::Vec4i(i,0,2,1))*vc -
                C.at<float>(cv::Vec4i(i,0,1,2))*vp + C.at<float>(cv::Vec4i(i,2,1,2))*vp.mul(uc) + C.at<float>(cv::Vec4i(i,0,2,2))*vp.mul(vc);
    }

    // Convert to non homogenous coordinates
    for(unsigned int i=0; i<3; i++)
        xyzw[i] /= xyzw[3];

    // Merge
    cv::merge(std::vector<cv::Mat>(xyzw.begin(), xyzw.begin()+3), xyz);

}
开发者ID:immermachen,项目名称:slstudio,代码行数:19,代码来源:Triangulator.cpp

示例14: interpolate

/**
 * Interpolate D19 pixel values
 */
void CalibrationFilter::interpolate()
{
    // Gaussian interpolation mask
    float coeff[9] = {
        .707,  1.0, .707,
         1.0,  0.0,  1.0,
        .707,  1.0, .707 };
    const cv::Mat mask(3, 3, CV_32F, coeff);

    for(int i=1; i<mFrame32F_big.rows-1; ++i)
    {
        for(int j=1; j<mFrame32F_big.cols-1; ++j)
        {
            // Check if pixel is dead
            if(mAlive_big.at<unsigned char>(i, j) == 0)
            {
                // Dead pixel: build interpolation matrix
                cv::Mat neighbor( 3, 3, CV_32F );
                mAlive_big( cv::Range(i-1, i+2), cv::Range(j-1, j+2) ).convertTo( neighbor, CV_32F );

                //QLOG_DEBUG() << TAG << "neighbor sum" << cv::sum( neighbor )[0];

                // Compute interpolated value
                // 'M' is the same as 'mask' but with 0-coefficient over dead pixels
                const cv::Mat M = mask.mul( neighbor, 1.0 );

                // 'roi' Region of interest is the 3x3 region centered on the dead pixel
                const cv::Mat roi = mFrame32F_big( cv::Range(i-1, i+2), cv::Range(j-1, j+2) );
                double sum = cv::sum( M )[0];
                if(sum >= 1.0)
                {
                    mFrame32F_big.at<float>(i, j) = M.dot( roi ) / sum;
                }
                else
                {
                    mFrame32F_big.at<float>(i, j) = 0;
                }
            }
        }
    }
}
开发者ID:Mik42l,项目名称:MagicPad_v2_src,代码行数:44,代码来源:calibrationFilter.cpp

示例15: WeightedSum

double mylib::WeightedSum(const cv::Mat& A, const cv::Mat& W)
{
	if (A.size() != W.size())
		exit(0);
	//int a = A.type();
	//int b = W.type();
	double result=0.0;
	cv::Scalar s;
	vector<Mat> Wv;
	Mat W3;
	for (int i=0; i< A.channels(); i++)
	{
		Wv.push_back(W);
	}
	cv::merge(Wv,W3);
	W3 = A.mul(W3);
	s = cv::sum(W3);
	for (int i=0; i<A.channels(); i++)
		result += s[i];
	return result / A.channels();


}
开发者ID:jgmao,项目名称:MTC,代码行数:23,代码来源:MyLib.cpp


注:本文中的cv::Mat::mul方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。