本文整理汇总了C++中cv::InputArray::empty方法的典型用法代码示例。如果您正苦于以下问题:C++ InputArray::empty方法的具体用法?C++ InputArray::empty怎么用?C++ InputArray::empty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv::InputArray
的用法示例。
在下文中一共展示了InputArray::empty方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setAnimation
void Picture::setAnimation(const AnimationEnum &animationEnum,
const cv::InputArray &startImg, const cv::InputArray &endImg)
{
delete animation;
Mat startImage = startImg.getMat();
Mat endImage = endImg.getMat();
if (!startImg.empty() && startImg.size() != this->size())
cv::resize(startImg, startImage, this->size());
if (!endImg.empty() && endImg.size() != this->size())
cv::resize(endImg, endImage, this->size());
animation = AnimationFactory::createAnimation(animationEnum, startImage, endImage);
}
示例2: solveGeneric
void IPPE::PoseSolver::solveGeneric(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs,
cv::OutputArray _rvec1, cv::OutputArray _tvec1, float& err1, cv::OutputArray _rvec2, cv::OutputArray _tvec2, float& err2)
{
cv::Mat normalizedImagePoints; //undistored version of imagePoints
if (_cameraMatrix.empty()) {
//there is no camera matrix and image points are given in normalized pixel coordinates.
_imagePoints.copyTo(normalizedImagePoints);
}
else {
//undistort the image points (i.e. put them in normalized pixel coordinates):
cv::undistortPoints(_imagePoints, normalizedImagePoints, _cameraMatrix, _distCoeffs);
}
//solve:
cv::Mat Ma, Mb;
solveGeneric(_objectPoints, normalizedImagePoints, Ma, Mb);
//the two poses computed by IPPE (sorted):
cv::Mat M1, M2;
//sort poses by reprojection error:
sortPosesByReprojError(_objectPoints, _imagePoints, _cameraMatrix, _distCoeffs, Ma, Mb, M1, M2, err1, err2);
//fill outputs
rot2vec(M1.colRange(0, 3).rowRange(0, 3), _rvec1);
rot2vec(M2.colRange(0, 3).rowRange(0, 3), _rvec2);
M1.colRange(3, 4).rowRange(0, 3).copyTo(_tvec1);
M2.colRange(3, 4).rowRange(0, 3).copyTo(_tvec2);
}
示例3:
cv::viz::WCloud::WCloud(cv::InputArray cloud, cv::InputArray colors, cv::InputArray normals)
{
CV_Assert(!cloud.empty() && !colors.empty());
vtkSmartPointer<vtkCloudMatSource> cloud_source = vtkSmartPointer<vtkCloudMatSource>::New();
cloud_source->SetColorCloudNormals(cloud, colors, normals);
cloud_source->Update();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
VtkUtils::SetInputData(mapper, cloud_source->GetOutput());
mapper->SetScalarModeToUsePointData();
#if VTK_MAJOR_VERSION < 8
mapper->ImmediateModeRenderingOff();
#endif
mapper->SetScalarRange(0, 255);
mapper->ScalarVisibilityOn();
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->GetProperty()->SetInterpolationToFlat();
actor->GetProperty()->BackfaceCullingOn();
actor->SetMapper(mapper);
WidgetAccessor::setProp(*this, actor);
}
示例4: directMap
void RadiometricResponse::directMap(cv::InputArray _E, cv::OutputArray _I) const {
if (_E.empty()) {
_I.clear();
return;
}
auto E = _E.getMat();
_I.create(_E.size(), CV_8UC3);
auto I = _I.getMat();
#if CV_MAJOR_VERSION > 2
E.forEach<cv::Vec3f>(
[&I, this](cv::Vec3f& v, const int* p) { I.at<cv::Vec3b>(p[0], p[1]) = inverseLUT(response_channels_, v); });
#else
for (int i = 0; i < E.rows; i++)
for (int j = 0; j < E.cols; j++) I.at<cv::Vec3b>(i, j) = inverseLUT(response_channels_, E.at<cv::Vec3f>(i, j));
#endif
}
示例5: K
void IPPE::PoseSolver::evalReprojError(cv::InputArray _objectPoints, cv::InputArray _imagePoints, cv::InputArray _cameraMatrix, cv::InputArray _distCoeffs, cv::InputArray _M, float& err)
{
cv::Mat projectedPoints;
cv::Mat imagePoints = _imagePoints.getMat();
cv::Mat r;
rot2vec(_M.getMat().colRange(0, 3).rowRange(0, 3), r);
if (_cameraMatrix.empty()) {
//there is no camera matrix and image points are in normalized pixel coordinates
cv::Mat K(3, 3, CV_64FC1);
K.setTo(0);
K.at<double>(0, 0) = 1;
K.at<double>(1, 1) = 1;
K.at<double>(2, 2) = 1;
cv::Mat kc;
cv::projectPoints(_objectPoints, r, _M.getMat().colRange(3, 4).rowRange(0, 3), K, kc, projectedPoints);
}
else {
cv::projectPoints(_objectPoints, r, _M.getMat().colRange(3, 4).rowRange(0, 3), _cameraMatrix, _distCoeffs, projectedPoints);
}
err = 0;
size_t n = _objectPoints.rows() * _objectPoints.cols();
float dx, dy;
for (size_t i = 0; i < n; i++) {
if (projectedPoints.depth() == CV_32FC1) {
dx = projectedPoints.at<Vec2f>(i)[0] - imagePoints.at<Vec2f>(i)[0];
dy = projectedPoints.at<Vec2f>(i)[0] - imagePoints.at<Vec2f>(i)[0];
}
else {
dx = projectedPoints.at<Vec2d>(i)[0] - imagePoints.at<Vec2d>(i)[0];
dy = projectedPoints.at<Vec2d>(i)[0] - imagePoints.at<Vec2d>(i)[0];
}
err += dx * dx + dy * dy;
}
err = sqrt(err / (2.0f * n));
}
示例6: unprojectPointsFisheye
void unprojectPointsFisheye( cv::InputArray distorted, cv::OutputArray undistorted, cv::InputArray K, cv::InputArray D, cv::InputArray R, cv::InputArray P)
{
// will support only 2-channel data now for points
CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
undistorted.create(distorted.size(), CV_MAKETYPE(distorted.depth(), 3));
CV_Assert(P.empty() || P.size() == cv::Size(3, 3) || P.size() == cv::Size(4, 3));
CV_Assert(R.empty() || R.size() == cv::Size(3, 3) || R.total() * R.channels() == 3);
CV_Assert(D.total() == 4 && K.size() == cv::Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
cv::Vec2d f, c;
if (K.depth() == CV_32F)
{
cv::Matx33f camMat = K.getMat();
f = cv::Vec2f(camMat(0, 0), camMat(1, 1));
c = cv::Vec2f(camMat(0, 2), camMat(1, 2));
}
else
{
cv::Matx33d camMat = K.getMat();
f = cv::Vec2d(camMat(0, 0), camMat(1, 1));
c = cv::Vec2d(camMat(0, 2), camMat(1, 2));
}
cv::Vec4d k = D.depth() == CV_32F ? (cv::Vec4d)*D.getMat().ptr<cv::Vec4f>(): *D.getMat().ptr<cv::Vec4d>();
cv::Matx33d RR = cv::Matx33d::eye();
if (!R.empty() && R.total() * R.channels() == 3)
{
cv::Vec3d rvec;
R.getMat().convertTo(rvec, CV_64F);
RR = cv::Affine3d(rvec).rotation();
}
else if (!R.empty() && R.size() == cv::Size(3, 3))
R.getMat().convertTo(RR, CV_64F);
if(!P.empty())
{
cv::Matx33d PP;
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
RR = PP * RR;
}
// start undistorting
const cv::Vec2f* srcf = distorted.getMat().ptr<cv::Vec2f>();
const cv::Vec2d* srcd = distorted.getMat().ptr<cv::Vec2d>();
cv::Vec3f* dstf = undistorted.getMat().ptr<cv::Vec3f>();
cv::Vec3d* dstd = undistorted.getMat().ptr<cv::Vec3d>();
size_t n = distorted.total();
int sdepth = distorted.depth();
for(size_t i = 0; i < n; i++ )
{
cv::Vec2d pi = sdepth == CV_32F ? (cv::Vec2d)srcf[i] : srcd[i]; // image point
cv::Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]); // world point
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
double theta = theta_d;
if (theta_d > 1e-8)
{
// compensate distortion iteratively
for(int j = 0; j < 10; j++ )
{
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
theta = theta_d / (1 + k[0] * theta2 + k[1] * theta4 + k[2] * theta6 + k[3] * theta8);
}
}
double z = std::cos(theta);
double r = std::sin(theta);
cv::Vec3d pu = cv::Vec3d(r*pw[0], r*pw[1], z); //undistorted point
// reproject
cv::Vec3d pr = RR * pu; // rotated point optionally multiplied by new camera matrix
cv::Vec3d fi; // final
normalize(pr, fi);
if( sdepth == CV_32F )
dstf[i] = fi;
else
dstd[i] = fi;
}
}
示例7: write_one
bool VideoWriter_IntelMFX::write_one(cv::InputArray bgr)
{
mfxStatus res;
mfxFrameSurface1 *workSurface = 0;
mfxSyncPoint sync;
if (!bgr.empty() && (bgr.dims() != 2 || bgr.type() != CV_8UC3 || bgr.size() != frameSize))
{
MSG(cerr << "MFX: invalid frame passed to encoder: "
<< "dims/depth/cn=" << bgr.dims() << "/" << bgr.depth() << "/" << bgr.channels()
<< ", size=" << bgr.size() << endl);
return false;
}
if (!bgr.empty())
{
workSurface = pool->getFreeSurface();
if (!workSurface)
{
// not enough surfaces
MSG(cerr << "MFX: Failed to get free surface" << endl);
return false;
}
const int rows = workSurface->Info.Height;
const int cols = workSurface->Info.Width;
Mat Y(rows, cols, CV_8UC1, workSurface->Data.Y, workSurface->Data.Pitch);
Mat UV(rows / 2, cols, CV_8UC1, workSurface->Data.UV, workSurface->Data.Pitch);
to_nv12(bgr, Y, UV);
CV_Assert(Y.ptr() == workSurface->Data.Y);
CV_Assert(UV.ptr() == workSurface->Data.UV);
}
while (true)
{
outSurface = 0;
DBG(cout << "Calling with surface: " << workSurface << endl);
res = encoder->EncodeFrameAsync(NULL, workSurface, &bs->stream, &sync);
if (res == MFX_ERR_NONE)
{
res = session->SyncOperation(sync, 1000); // 1 sec, TODO: provide interface to modify timeout
if (res == MFX_ERR_NONE)
{
// ready to write
if (!bs->write())
{
MSG(cerr << "MFX: Failed to write bitstream" << endl);
return false;
}
else
{
DBG(cout << "Write bitstream" << endl);
return true;
}
}
else
{
MSG(cerr << "MFX: Sync error: " << res << endl);
return false;
}
}
else if (res == MFX_ERR_MORE_DATA)
{
DBG(cout << "ERR_MORE_DATA" << endl);
return false;
}
else if (res == MFX_WRN_DEVICE_BUSY)
{
DBG(cout << "Waiting for device" << endl);
sleep(1);
continue;
}
else
{
MSG(cerr << "MFX: Bad status: " << res << endl);
return false;
}
}
}
示例8: savePointCloud
void savePointCloud(const std::string file, cv::InputArray point_cloud, const bool is_binary, cv::InputArray color_image, const bool remove_miss_point)
{
const cv::Mat points = point_cloud.getMat();
const bool color_cloud = (!color_image.empty() && (point_cloud.size() == color_image.size()));
if (points.empty())
return;
if (points.type() != CV_32FC1)
points.reshape(1, 3);
if (color_cloud)
{
const cv::Mat im = color_image.getMat();
pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGB>);
for (int row = 0; row < points.rows; ++row)
{
const auto ptr = points.ptr<cv::Vec3f>(row);
const auto ptr_image = im.ptr<cv::Vec3b>(row);
for (int col = 0; col < points.cols; ++col)
{
const auto val = ptr[col];
const auto color = ptr_image[col];
if (!remove_miss_point || (remove_miss_point && val[2] < 9999.9f))
{
pcl::PointXYZRGB p;
p.x = val[0], p.y = val[1], p.z = val[2], p.r = color[0], p.g = color[1], p.b = color[2];
cloud->push_back(p);
}
}
}
if (cloud->size() == 0)
return;
else if (is_binary)
pcl::io::savePLYFileBinary(file, *cloud);
else
pcl::io::savePLYFileASCII(file, *cloud);
}
else
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
for (int row = 0; row < points.rows; ++row)
{
const auto ptr = points.ptr<cv::Vec3f>(row);
for (int col = 0; col < points.cols; ++col)
{
const auto val = ptr[col];
if (!remove_miss_point || (remove_miss_point && val[2] < 9999.9f))
cloud->push_back(pcl::PointXYZ(val[0], val[1], val[2]));
}
}
if (cloud->size() == 0)
return;
else if (is_binary)
pcl::io::savePLYFileBinary(file, *cloud);
else
pcl::io::savePLYFileASCII(file, *cloud);
}
return;
}