本文整理汇总了C++中cv::InputArray::channels方法的典型用法代码示例。如果您正苦于以下问题:C++ InputArray::channels方法的具体用法?C++ InputArray::channels怎么用?C++ InputArray::channels使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cv::InputArray
的用法示例。
在下文中一共展示了InputArray::channels方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: coherenceEnhancingShockFilter
void coherenceEnhancingShockFilter(cv::InputArray src, cv::OutputArray dest_, const int sigma, const int str_sigma_, const double blend, const int iter)
{
Mat dest = src.getMat();
const int str_sigma = min(31, str_sigma_);
for (int i = 0; i < iter; i++)
{
Mat gray;
if (src.channels() == 3)cvtColor(dest, gray, CV_BGR2GRAY);
else gray = dest;
Mat eigen;
if (gray.type() == CV_8U || gray.type() == CV_32F || gray.type() == CV_64F)
cornerEigenValsAndVecs(gray, eigen, str_sigma, 3);
else
{
Mat grayf; gray.convertTo(grayf, CV_32F);
cornerEigenValsAndVecs(grayf, eigen, str_sigma, 3);
}
vector<Mat> esplit(6);
split(eigen, esplit);
Mat x = esplit[2];
Mat y = esplit[3];
Mat gxx;
Mat gyy;
Mat gxy;
Sobel(gray, gxx, CV_32F, 2, 0, sigma);
Sobel(gray, gyy, CV_32F, 0, 2, sigma);
Sobel(gray, gxy, CV_32F, 1, 1, sigma);
Mat gvv = x.mul(x).mul(gxx) + 2 * x.mul(y).mul(gxy) + y.mul(y).mul(gyy);
Mat mask;
compare(gvv, 0, mask, cv::CMP_LT);
Mat di, ero;
erode(dest, ero, Mat());
dilate(dest, di, Mat());
di.copyTo(ero, mask);
addWeighted(dest, blend, ero, 1.0 - blend, 0.0, dest);
}
dest.copyTo(dest_);
}
示例2: unprojectPointsFisheye
void unprojectPointsFisheye( cv::InputArray distorted, cv::OutputArray undistorted, cv::InputArray K, cv::InputArray D, cv::InputArray R, cv::InputArray P)
{
// will support only 2-channel data now for points
CV_Assert(distorted.type() == CV_32FC2 || distorted.type() == CV_64FC2);
undistorted.create(distorted.size(), CV_MAKETYPE(distorted.depth(), 3));
CV_Assert(P.empty() || P.size() == cv::Size(3, 3) || P.size() == cv::Size(4, 3));
CV_Assert(R.empty() || R.size() == cv::Size(3, 3) || R.total() * R.channels() == 3);
CV_Assert(D.total() == 4 && K.size() == cv::Size(3, 3) && (K.depth() == CV_32F || K.depth() == CV_64F));
cv::Vec2d f, c;
if (K.depth() == CV_32F)
{
cv::Matx33f camMat = K.getMat();
f = cv::Vec2f(camMat(0, 0), camMat(1, 1));
c = cv::Vec2f(camMat(0, 2), camMat(1, 2));
}
else
{
cv::Matx33d camMat = K.getMat();
f = cv::Vec2d(camMat(0, 0), camMat(1, 1));
c = cv::Vec2d(camMat(0, 2), camMat(1, 2));
}
cv::Vec4d k = D.depth() == CV_32F ? (cv::Vec4d)*D.getMat().ptr<cv::Vec4f>(): *D.getMat().ptr<cv::Vec4d>();
cv::Matx33d RR = cv::Matx33d::eye();
if (!R.empty() && R.total() * R.channels() == 3)
{
cv::Vec3d rvec;
R.getMat().convertTo(rvec, CV_64F);
RR = cv::Affine3d(rvec).rotation();
}
else if (!R.empty() && R.size() == cv::Size(3, 3))
R.getMat().convertTo(RR, CV_64F);
if(!P.empty())
{
cv::Matx33d PP;
P.getMat().colRange(0, 3).convertTo(PP, CV_64F);
RR = PP * RR;
}
// start undistorting
const cv::Vec2f* srcf = distorted.getMat().ptr<cv::Vec2f>();
const cv::Vec2d* srcd = distorted.getMat().ptr<cv::Vec2d>();
cv::Vec3f* dstf = undistorted.getMat().ptr<cv::Vec3f>();
cv::Vec3d* dstd = undistorted.getMat().ptr<cv::Vec3d>();
size_t n = distorted.total();
int sdepth = distorted.depth();
for(size_t i = 0; i < n; i++ )
{
cv::Vec2d pi = sdepth == CV_32F ? (cv::Vec2d)srcf[i] : srcd[i]; // image point
cv::Vec2d pw((pi[0] - c[0])/f[0], (pi[1] - c[1])/f[1]); // world point
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
double theta = theta_d;
if (theta_d > 1e-8)
{
// compensate distortion iteratively
for(int j = 0; j < 10; j++ )
{
double theta2 = theta*theta, theta4 = theta2*theta2, theta6 = theta4*theta2, theta8 = theta6*theta2;
theta = theta_d / (1 + k[0] * theta2 + k[1] * theta4 + k[2] * theta6 + k[3] * theta8);
}
}
double z = std::cos(theta);
double r = std::sin(theta);
cv::Vec3d pu = cv::Vec3d(r*pw[0], r*pw[1], z); //undistorted point
// reproject
cv::Vec3d pr = RR * pu; // rotated point optionally multiplied by new camera matrix
cv::Vec3d fi; // final
normalize(pr, fi);
if( sdepth == CV_32F )
dstf[i] = fi;
else
dstd[i] = fi;
}
}
示例3: write_one
bool VideoWriter_IntelMFX::write_one(cv::InputArray bgr)
{
mfxStatus res;
mfxFrameSurface1 *workSurface = 0;
mfxSyncPoint sync;
if (!bgr.empty() && (bgr.dims() != 2 || bgr.type() != CV_8UC3 || bgr.size() != frameSize))
{
MSG(cerr << "MFX: invalid frame passed to encoder: "
<< "dims/depth/cn=" << bgr.dims() << "/" << bgr.depth() << "/" << bgr.channels()
<< ", size=" << bgr.size() << endl);
return false;
}
if (!bgr.empty())
{
workSurface = pool->getFreeSurface();
if (!workSurface)
{
// not enough surfaces
MSG(cerr << "MFX: Failed to get free surface" << endl);
return false;
}
const int rows = workSurface->Info.Height;
const int cols = workSurface->Info.Width;
Mat Y(rows, cols, CV_8UC1, workSurface->Data.Y, workSurface->Data.Pitch);
Mat UV(rows / 2, cols, CV_8UC1, workSurface->Data.UV, workSurface->Data.Pitch);
to_nv12(bgr, Y, UV);
CV_Assert(Y.ptr() == workSurface->Data.Y);
CV_Assert(UV.ptr() == workSurface->Data.UV);
}
while (true)
{
outSurface = 0;
DBG(cout << "Calling with surface: " << workSurface << endl);
res = encoder->EncodeFrameAsync(NULL, workSurface, &bs->stream, &sync);
if (res == MFX_ERR_NONE)
{
res = session->SyncOperation(sync, 1000); // 1 sec, TODO: provide interface to modify timeout
if (res == MFX_ERR_NONE)
{
// ready to write
if (!bs->write())
{
MSG(cerr << "MFX: Failed to write bitstream" << endl);
return false;
}
else
{
DBG(cout << "Write bitstream" << endl);
return true;
}
}
else
{
MSG(cerr << "MFX: Sync error: " << res << endl);
return false;
}
}
else if (res == MFX_ERR_MORE_DATA)
{
DBG(cout << "ERR_MORE_DATA" << endl);
return false;
}
else if (res == MFX_WRN_DEVICE_BUSY)
{
DBG(cout << "Waiting for device" << endl);
sleep(1);
continue;
}
else
{
MSG(cerr << "MFX: Bad status: " << res << endl);
return false;
}
}
}