本文整理汇总了C++中cclib::ReferenceCloud::getPoint方法的典型用法代码示例。如果您正苦于以下问题:C++ ReferenceCloud::getPoint方法的具体用法?C++ ReferenceCloud::getPoint怎么用?C++ ReferenceCloud::getPoint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cclib::ReferenceCloud
的用法示例。
在下文中一共展示了ReferenceCloud::getPoint方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: estimateDelta
void ccAlignDlg::estimateDelta()
{
unsigned i, nb;
float meanDensity, meanSqrDensity, dev, value;
ccProgressDialog pDlg(false,this);
CCLib::ReferenceCloud *sampledData = getSampledData();
//we have to work on a copy of the cloud in order to prevent the algorithms from modifying the original cloud.
CCLib::ChunkedPointCloud* cloud = new CCLib::ChunkedPointCloud();
cloud->reserve(sampledData->size());
for(i=0; i<sampledData->size(); i++)
cloud->addPoint(*sampledData->getPoint(i));
cloud->enableScalarField();
CCLib::GeometricalAnalysisTools::computeLocalDensity(cloud, &pDlg);
nb = 0;
meanDensity = 0.;
meanSqrDensity = 0.;
for(i=0; i<cloud->size(); i++)
{
value = cloud->getPointScalarValue(i);
if(value > ZERO_TOLERANCE)
{
value = 1/value;
meanDensity += value;
meanSqrDensity += value*value;
nb++;
}
}
meanDensity /= (float)nb;
meanSqrDensity /= (float)nb;
dev = meanSqrDensity-(meanDensity*meanDensity);
delta->setValue(meanDensity+dev);
delete sampledData;
delete cloud;
}
示例2: FuseCells
//.........这里部分代码省略.........
for (std::list<Candidate>::iterator it = candidates.begin(); it !=candidates.end(); ++it)
it->dist = (it->centroid-currentCentroid).norm2();
//sort candidates by their distance
candidates.sort(CandidateDistAscendingComparison);
}
//we will keep track of the best fused 'couple' at each pass
std::list<Candidate>::iterator bestIt = candidates.end();
CCLib::ReferenceCloud* bestFused = 0;
CCVector3 bestNormal(0,0,0);
double bestError = -1.0;
unsigned skipCount = 0;
for (std::list<Candidate>::iterator it = candidates.begin(); it != candidates.end(); /*++it*/)
{
assert(it->leaf && it->leaf->points);
assert(currentPointSet->getAssociatedCloud() == it->leaf->points->getAssociatedCloud());
//if the leaf orientation is too different
if (fabs(CCVector3(it->leaf->planeEq).dot(currentNormal)) < c_minCosNormAngle)
{
it = candidates.erase(it);
//++it;
//++skipCount;
continue;
}
//compute the minimum distance between the candidate centroid and the 'currentPointSet'
PointCoordinateType minDistToMainSet = 0.0;
{
for (unsigned j=0; j<currentPointSet->size(); ++j)
{
const CCVector3* P = currentPointSet->getPoint(j);
PointCoordinateType d2 = (*P-it->centroid).norm2();
if (d2 < minDistToMainSet || j == 0)
minDistToMainSet = d2;
}
minDistToMainSet = sqrt(minDistToMainSet);
}
//if the leaf is too far
if (it->radius < minDistToMainSet / overlapCoef)
{
++it;
++skipCount;
continue;
}
//fuse the main set with the current candidate
CCLib::ReferenceCloud* fused = new CCLib::ReferenceCloud(*currentPointSet);
if (!fused->add(*(it->leaf->points)))
{
//not enough memory!
ccLog::Warning("[ccKdTreeForFacetExtraction] Not enough memory!");
delete fused;
if (currentPointSet != currentCell->points)
delete currentPointSet;
return false;
}
//fit a plane and estimate the resulting error
double error = -1.0;
const PointCoordinateType* planeEquation = CCLib::Neighbourhood(fused).getLSPlane();
if (planeEquation)
error = CCLib::DistanceComputationTools::ComputeCloud2PlaneDistance(fused, planeEquation, errorMeasure);