本文整理汇总了C++中cclib::ReferenceCloud类的典型用法代码示例。如果您正苦于以下问题:C++ ReferenceCloud类的具体用法?C++ ReferenceCloud怎么用?C++ ReferenceCloud使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ReferenceCloud类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: convertCellIndexToRandomColor
bool ccKdTree::convertCellIndexToRandomColor()
{
if (!m_associatedGenericCloud || !m_associatedGenericCloud->isA(CC_TYPES::POINT_CLOUD))
return false;
//get leaves
std::vector<Leaf*> leaves;
if (!getLeaves(leaves) || leaves.empty())
return false;
ccPointCloud* pc = static_cast<ccPointCloud*>(m_associatedGenericCloud);
if (!pc->resizeTheRGBTable())
return false;
//for each cell
for (size_t i=0; i<leaves.size(); ++i)
{
colorType col[3];
ccColor::Generator::Random(col);
CCLib::ReferenceCloud* subset = leaves[i]->points;
if (subset)
{
for (unsigned j=0; j<subset->size(); ++j)
pc->setPointColor(subset->getPointGlobalIndex(j),col);
}
}
pc->showColors(true);
return true;
}
示例2: getTheVisiblePoints
CCLib::ReferenceCloud* ccGenericPointCloud::getTheVisiblePoints()
{
if (!m_visibilityArray || m_visibilityArray->currentSize()<size())
return 0;
unsigned i,count = size();
assert(count == m_visibilityArray->currentSize());
//we create an entity with the 'visible' vertices only
CCLib::ReferenceCloud* rc = new CCLib::ReferenceCloud(this);
for (i=0;i<count;++i)
if (m_visibilityArray->getValue(i) > 0)
rc->addPointIndex(i);
return rc;
}
示例3: dataSamplingRateChanged
void ccAlignDlg::dataSamplingRateChanged(double value)
{
QString message("An error occured");
CC_SAMPLING_METHOD method = getSamplingMethod();
float rate = (float)dataSamplingRate->value()/(float)dataSamplingRate->maximum();
if(method == SPACE)
rate = 1.0f-rate;
dataSample->setSliderPosition((unsigned)((float)dataSample->maximum()*rate));
switch(method)
{
case SPACE:
{
CCLib::ReferenceCloud* tmpCloud = getSampledData(); //DGM FIXME: wow! you generate a spatially sampled cloud just to display its size?!
if (tmpCloud)
{
message = QString("distance units (%1 remaining points)").arg(tmpCloud->size());
delete tmpCloud;
}
}
break;
case RANDOM:
{
message = QString("remaining points (%1%)").arg(rate*100.0f,0,'f',1);
}
break;
case OCTREE:
{
CCLib::ReferenceCloud* tmpCloud = getSampledData(); //DGM FIXME: wow! you generate a spatially sampled cloud just to display its size?!
if (tmpCloud)
{
message = QString("%1 remaining points").arg(tmpCloud->size());
delete tmpCloud;
}
}
break;
default:
{
unsigned remaining = (unsigned)(rate * (float)dataObject->size());
message = QString("%1 remaining points").arg(remaining);
}
break;
}
dataRemaining->setText(message);
}
示例4: updateResolvedTable
int ccFastMarchingForNormsDirection::updateResolvedTable(ccGenericPointCloud* theCloud,
GenericChunkedArray<1,uchar> &resolved,
NormsIndexesTableType* theNorms)
{
if (!initialized)
return -1;
int count=0;
for (unsigned i=0;i<activeCells.size();++i)
{
DirectionCell* aCell = (DirectionCell*)theGrid[activeCells[i]];
CCLib::ReferenceCloud* Yk = theOctree->getPointsInCell(aCell->cellCode,gridLevel,true);
if (!Yk)
continue;
Yk->placeIteratorAtBegining();
for (unsigned k=0;k<Yk->size();++k)
{
unsigned index = Yk->getCurrentPointGlobalIndex();
resolved.setValue(index,1); //resolvedValue=1
const normsType& norm = theNorms->getValue(index);
if (CCVector3::vdot(ccNormalVectors::GetNormal(norm),aCell->N)<0.0)
{
PointCoordinateType newN[3];
const PointCoordinateType* N = ccNormalVectors::GetNormal(norm);
newN[0]=-N[0];
newN[1]=-N[1];
newN[2]=-N[2];
theNorms->setValue(index,ccNormalVectors::GetNormIndex(newN));
}
//norm = NormalVectors::getNormIndex(aCell->N);
//theNorms->setValue(index,&norm);
theCloud->setPointScalarValue(index,aCell->T);
//theCloud->setPointScalarValue(index,aCell->v);
Yk->forwardIterator();
++count;
}
}
return count;
}
示例5: getTheVisiblePoints
CCLib::ReferenceCloud* ccGenericPointCloud::getTheVisiblePoints() const
{
unsigned count = size();
assert(count == m_pointsVisibility->currentSize());
if (!m_pointsVisibility || m_pointsVisibility->currentSize() != count)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No visibility table instantiated!");
return 0;
}
//count the number of points to copy
unsigned pointCount = 0;
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
++pointCount;
}
if (pointCount == 0)
{
ccLog::Warning("[ccGenericPointCloud::getTheVisiblePoints] No point in selection");
return 0;
}
//we create an entity with the 'visible' vertices only
CCLib::ReferenceCloud* rc = new CCLib::ReferenceCloud(const_cast<ccGenericPointCloud*>(this));
if (rc->reserve(pointCount))
{
for (unsigned i=0; i<count; ++i)
if (m_pointsVisibility->getValue(i) == POINT_VISIBLE)
rc->addPointIndex(i); //can't fail (see above)
}
else
{
delete rc;
rc = 0;
ccLog::Error("[ccGenericPointCloud::getTheVisiblePoints] Not enough memory!");
}
return rc;
}
示例6: convertCellIndexToSF
bool ccKdTree::convertCellIndexToSF()
{
if (!m_associatedGenericCloud || !m_associatedGenericCloud->isA(CC_TYPES::POINT_CLOUD))
return false;
//get leaves
std::vector<Leaf*> leaves;
if (!getLeaves(leaves) || leaves.empty())
return false;
ccPointCloud* pc = static_cast<ccPointCloud*>(m_associatedGenericCloud);
const char c_defaultSFName[] = "Kd-tree indexes";
int sfIdx = pc->getScalarFieldIndexByName(c_defaultSFName);
if (sfIdx < 0)
sfIdx = pc->addScalarField(c_defaultSFName);
if (sfIdx < 0)
{
ccLog::Error("Not enough memory!");
return false;
}
pc->setCurrentScalarField(sfIdx);
//for each cell
for (size_t i=0; i<leaves.size(); ++i)
{
CCLib::ReferenceCloud* subset = leaves[i]->points;
if (subset)
{
for (unsigned j=0; j<subset->size(); ++j)
subset->setPointScalarValue(j,(ScalarType)i);
}
}
pc->getScalarField(sfIdx)->computeMinAndMax();
pc->setCurrentDisplayedScalarField(sfIdx);
pc->showSF(true);
return true;
}
示例7: estimateDelta
void ccAlignDlg::estimateDelta()
{
unsigned i, nb;
float meanDensity, meanSqrDensity, dev, value;
ccProgressDialog pDlg(false,this);
CCLib::ReferenceCloud *sampledData = getSampledData();
//we have to work on a copy of the cloud in order to prevent the algorithms from modifying the original cloud.
CCLib::ChunkedPointCloud* cloud = new CCLib::ChunkedPointCloud();
cloud->reserve(sampledData->size());
for(i=0; i<sampledData->size(); i++)
cloud->addPoint(*sampledData->getPoint(i));
cloud->enableScalarField();
CCLib::GeometricalAnalysisTools::computeLocalDensity(cloud, &pDlg);
nb = 0;
meanDensity = 0.;
meanSqrDensity = 0.;
for(i=0; i<cloud->size(); i++)
{
value = cloud->getPointScalarValue(i);
if(value > ZERO_TOLERANCE)
{
value = 1/value;
meanDensity += value;
meanSqrDensity += value*value;
nb++;
}
}
meanDensity /= (float)nb;
meanSqrDensity /= (float)nb;
dev = meanSqrDensity-(meanDensity*meanDensity);
delta->setValue(meanDensity+dev);
delete sampledData;
delete cloud;
}
示例8: convertToSphereCenter
bool ccPointPairRegistrationDlg::convertToSphereCenter(CCVector3d& P, ccHObject* entity, PointCoordinateType& sphereRadius)
{
sphereRadius = -PC_ONE;
if ( !entity
|| !useSphereToolButton->isChecked()
|| !entity->isKindOf(CC_TYPES::POINT_CLOUD) ) //only works with cloud right now
{
//nothing to do
return true;
}
//we'll now try to detect the sphere
double searchRadius = radiusDoubleSpinBox->value();
double maxRMSPercentage = maxRmsSpinBox->value() / 100.0;
ccGenericPointCloud* cloud = static_cast<ccGenericPointCloud*>(entity);
assert(cloud);
//crop points inside a box centered on the current point
ccBBox box;
box.add(CCVector3::fromArray((P - CCVector3d(1,1,1)*searchRadius).u));
box.add(CCVector3::fromArray((P + CCVector3d(1,1,1)*searchRadius).u));
CCLib::ReferenceCloud* part = cloud->crop(box,true);
bool success = false;
if (part && part->size() > 16)
{
PointCoordinateType radius;
CCVector3 C;
double rms;
ccProgressDialog pDlg(true, this);
//first roughly search for the sphere
if (CCLib::GeometricalAnalysisTools::detectSphereRobust(part,0.5,C,radius,rms,&pDlg,0.9))
{
if (radius / searchRadius < 0.5 || radius / searchRadius > 2.0)
{
ccLog::Warning(QString("[ccPointPairRegistrationDlg] Detected sphere radius (%1) is too far from search radius!").arg(radius));
}
else
{
//now look again (more precisely)
{
delete part;
box.clear();
box.add(C - CCVector3(1,1,1)*radius*static_cast<PointCoordinateType>(1.05)); //add 5%
box.add(C + CCVector3(1,1,1)*radius*static_cast<PointCoordinateType>(1.05)); //add 5%
part = cloud->crop(box,true);
if (part && part->size() > 16)
CCLib::GeometricalAnalysisTools::detectSphereRobust(part,0.5,C,radius,rms,&pDlg,0.99);
}
ccLog::Print(QString("[ccPointPairRegistrationDlg] Detected sphere radius = %1 (rms = %2)").arg(radius).arg(rms));
if (radius / searchRadius < 0.5 || radius / searchRadius > 2.0)
{
ccLog::Warning("[ccPointPairRegistrationDlg] Sphere radius is too far from search radius!");
}
else if (rms / searchRadius >= maxRMSPercentage)
{
ccLog::Warning("[ccPointPairRegistrationDlg] RMS is too high!");
}
else
{
sphereRadius = radius;
P = CCVector3d::fromArray(C.u);
success = true;
}
}
}
else
{
ccLog::Warning("[ccPointPairRegistrationDlg] Failed to fit a sphere around the picked point!");
}
}
else
{
//not enough memory? No points inside the
ccLog::Warning("[ccPointPairRegistrationDlg] Failed to crop points around the picked point?!");
}
if (part)
delete part;
return success;
}
示例9: ICP
//.........这里部分代码省略.........
{
ccLog::Error("Failed to determine the max (overlap) distance (not enough memory?)");
return false;
}
//determine the max distance that (roughly) corresponds to the input overlap ratio
ScalarType maxSearchDist = 0;
{
unsigned count = dataCloud->size();
std::vector<ScalarType> distances;
try
{
distances.resize(count);
}
catch (const std::bad_alloc&)
{
ccLog::Error("Not enough memory!");
return false;
}
for (unsigned i=0; i<count; ++i)
{
distances[i] = dataCloud->getPointScalarValue(i);
}
ParallelSort(distances.begin(), distances.end());
//now look for the max value at 'finalOverlapRatio+margin' percent
maxSearchDist = distances[static_cast<unsigned>(std::max(1.0,count*(finalOverlapRatio+s_overlapMarginRatio)))-1];
}
//evntually select the points with distance below 'maxSearchDist'
//(should roughly correspond to 'finalOverlapRatio + margin' percent)
{
CCLib::ReferenceCloud* refCloud = new CCLib::ReferenceCloud(dataCloud);
cloudGarbage.add(refCloud);
unsigned countBefore = dataCloud->size();
unsigned baseIncrement = static_cast<unsigned>(std::max(100.0,countBefore*finalOverlapRatio*0.05));
for (unsigned i=0; i<countBefore; ++i)
{
if (dataCloud->getPointScalarValue(i) <= maxSearchDist)
{
if ( refCloud->size() == refCloud->capacity()
&& !refCloud->reserve(refCloud->size() + baseIncrement) )
{
ccLog::Error("Not enough memory!");
return false;
}
refCloud->addPointIndex(i);
}
}
refCloud->resize(refCloud->size());
dataCloud = refCloud;
unsigned countAfter = dataCloud->size();
double keptRatio = static_cast<double>(countAfter)/countBefore;
ccLog::Print(QString("[ICP][Partial overlap] Selecting %1 points out of %2 (%3%) for registration").arg(countAfter).arg(countBefore).arg(static_cast<int>(100*keptRatio)));
//update the relative 'final overlap' ratio
finalOverlapRatio /= keptRatio;
}
}
//weights
CCLib::ScalarField* modelWeights = nullptr;
CCLib::ScalarField* dataWeights = nullptr;
{
示例10: removeHiddenPoints
CCLib::ReferenceCloud* qHPR::removeHiddenPoints(CCLib::GenericIndexedCloudPersist* theCloud, const CCVector3d& viewPoint, double fParam)
{
assert(theCloud);
unsigned nbPoints = theCloud->size();
if (nbPoints == 0)
return 0;
//less than 4 points? no need for calculation, we return the whole cloud
if (nbPoints < 4)
{
CCLib::ReferenceCloud* visiblePoints = new CCLib::ReferenceCloud(theCloud);
if (!visiblePoints->addPointIndex(0,nbPoints)) //well even for less than 4 points we never know ;)
{
//not enough memory!
delete visiblePoints;
visiblePoints = 0;
}
return visiblePoints;
}
double maxRadius = 0;
//convert point cloud to an array of double triplets (for qHull)
coordT* pt_array = new coordT[(nbPoints+1)*3];
{
coordT* _pt_array = pt_array;
for (unsigned i=0; i<nbPoints; ++i)
{
CCVector3d P = CCVector3d::fromArray(theCloud->getPoint(i)->u) - viewPoint;
*_pt_array++ = static_cast<coordT>(P.x);
*_pt_array++ = static_cast<coordT>(P.y);
*_pt_array++ = static_cast<coordT>(P.z);
//we keep track of the highest 'radius'
double r2 = P.norm2();
if (maxRadius < r2)
maxRadius = r2;
}
//we add the view point (Cf. HPR)
*_pt_array++ = 0;
*_pt_array++ = 0;
*_pt_array++ = 0;
maxRadius = sqrt(maxRadius);
}
//apply spherical flipping
{
maxRadius *= pow(10.0,fParam) * 2;
coordT* _pt_array = pt_array;
for (unsigned i=0; i<nbPoints; ++i)
{
CCVector3d P = CCVector3d::fromArray(theCloud->getPoint(i)->u) - viewPoint;
double r = (maxRadius/P.norm()) - 1.0;
*_pt_array++ *= r;
*_pt_array++ *= r;
*_pt_array++ *= r;
}
}
//array to flag points on the convex hull
std::vector<bool> pointBelongsToCvxHull;
static char qHullCommand[] = "qhull QJ Qci";
if (!qh_new_qhull(3,nbPoints+1,pt_array,False,qHullCommand,0,stderr))
{
try
{
pointBelongsToCvxHull.resize(nbPoints+1,false);
}
catch (const std::bad_alloc&)
{
//not enough memory!
delete[] pt_array;
return 0;
}
vertexT *vertex = 0,**vertexp = 0;
facetT *facet = 0;
FORALLfacets
{
//if (!facet->simplicial)
// error("convhulln: non-simplicial facet"); // should never happen with QJ
setT* vertices = qh_facet3vertex(facet);
FOREACHvertex_(vertices)
{
pointBelongsToCvxHull[qh_pointid(vertex->point)] = true;
}
qh_settempfree(&vertices);
}
}
delete[] pt_array;
//.........这里部分代码省略.........
示例11: doAction
void qHPR::doAction()
{
assert(m_app);
if (!m_app)
return;
const ccHObject::Container& selectedEntities = m_app->getSelectedEntities();
size_t selNum = selectedEntities.size();
if ( selNum != 1
|| !selectedEntities.front()->isA(CC_TYPES::POINT_CLOUD))
{
m_app->dispToConsole("Select only one cloud!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
ccPointCloud* cloud = static_cast<ccPointCloud*>(selectedEntities[0]);
ccGLWindow* win = m_app->getActiveGLWindow();
if (!win)
{
m_app->dispToConsole("No active window!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
//display parameters
const ccViewportParameters& params = win->getViewportParameters();
if (!params.perspectiveView)
{
m_app->dispToConsole("Perspective mode only!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
ccHprDlg dlg(m_app->getMainWindow());
if (!dlg.exec())
return;
//progress dialog
ccProgressDialog progressCb(false,m_app->getMainWindow());
//unique parameter: the octree subdivision level
int octreeLevel = dlg.octreeLevelSpinBox->value();
assert(octreeLevel >= 0 && octreeLevel <= CCLib::DgmOctree::MAX_OCTREE_LEVEL);
//compute octree if cloud hasn't any
ccOctree::Shared theOctree = cloud->getOctree();
if (!theOctree)
{
theOctree = cloud->computeOctree(&progressCb);
if (theOctree && cloud->getParent())
{
m_app->addToDB(cloud->getOctreeProxy());
}
}
if (!theOctree)
{
m_app->dispToConsole("Couldn't compute octree!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
CCVector3d viewPoint = params.cameraCenter;
if (params.objectCenteredView)
{
CCVector3d PC = params.cameraCenter - params.pivotPoint;
params.viewMat.inverse().apply(PC);
viewPoint = params.pivotPoint + PC;
}
//HPR
CCLib::ReferenceCloud* visibleCells = 0;
{
QElapsedTimer eTimer;
eTimer.start();
CCLib::ReferenceCloud* theCellCenters = CCLib::CloudSamplingTools::subsampleCloudWithOctreeAtLevel( cloud,
static_cast<unsigned char>(octreeLevel),
CCLib::CloudSamplingTools::NEAREST_POINT_TO_CELL_CENTER,
&progressCb,
theOctree.data());
if (!theCellCenters)
{
m_app->dispToConsole("Error while simplifying point cloud with octree!",ccMainAppInterface::ERR_CONSOLE_MESSAGE);
return;
}
visibleCells = removeHiddenPoints(theCellCenters,viewPoint,3.5);
m_app->dispToConsole(QString("[HPR] Cells: %1 - Time: %2 s").arg(theCellCenters->size()).arg(eTimer.elapsed()/1.0e3));
//warning: after this, visibleCells can't be used anymore as a
//normal cloud (as it's 'associated cloud' has been deleted).
//Only its indexes are valid! (they are corresponding to octree cells)
delete theCellCenters;
theCellCenters = 0;
}
if (visibleCells)
{
//DGM: we generate a new cloud now, instead of playing with the points visiblity! (too confusing for the user)
/*if (!cloud->isVisibilityTableInstantiated() && !cloud->resetVisibilityArray())
//.........这里部分代码省略.........
示例12: FuseCells
bool ccKdTreeForFacetExtraction::FuseCells( ccKdTree* kdTree,
double maxError,
CCLib::DistanceComputationTools::ERROR_MEASURES errorMeasure,
double maxAngle_deg,
PointCoordinateType overlapCoef/*=1*/,
bool closestFirst/*=true*/,
CCLib::GenericProgressCallback* progressCb/*=0*/)
{
if (!kdTree)
return false;
ccGenericPointCloud* associatedGenericCloud = kdTree->associatedGenericCloud();
if (!associatedGenericCloud || !associatedGenericCloud->isA(CC_TYPES::POINT_CLOUD) || maxError < 0.0)
return false;
//get leaves
std::vector<ccKdTree::Leaf*> leaves;
if (!kdTree->getLeaves(leaves) || leaves.empty())
return false;
//progress notification
CCLib::NormalizedProgress nProgress(progressCb, static_cast<unsigned>(leaves.size()));
if (progressCb)
{
progressCb->update(0);
if (progressCb->textCanBeEdited())
{
progressCb->setMethodTitle("Fuse Kd-tree cells");
progressCb->setInfo(qPrintable(QString("Cells: %1\nMax error: %2").arg(leaves.size()).arg(maxError)));
}
progressCb->start();
}
ccPointCloud* pc = static_cast<ccPointCloud*>(associatedGenericCloud);
//sort cells based on their population size (we start by the biggest ones)
SortAlgo(leaves.begin(), leaves.end(), DescendingLeafSizeComparison);
//set all 'userData' to -1 (i.e. unfused cells)
{
for (size_t i=0; i<leaves.size(); ++i)
{
leaves[i]->userData = -1;
//check by the way that the plane normal is unit!
assert(static_cast<double>(fabs(CCVector3(leaves[i]->planeEq).norm2()) - 1.0) < 1.0e-6);
}
}
// cosine of the max angle between fused 'planes'
const double c_minCosNormAngle = cos(maxAngle_deg * CC_DEG_TO_RAD);
//fuse all cells, starting from the ones with the best error
const int unvisitedNeighborValue = -1;
bool cancelled = false;
int macroIndex = 1; //starts at 1 (0 is reserved for cells already above the max error)
{
for (size_t i=0; i<leaves.size(); ++i)
{
ccKdTree::Leaf* currentCell = leaves[i];
if (currentCell->error >= maxError)
currentCell->userData = 0; //0 = special group for cells already above the user defined threshold!
//already fused?
if (currentCell->userData != -1)
{
if (progressCb && !nProgress.oneStep()) //process canceled by user
{
cancelled = true;
break;
}
continue;
}
//we create a new "macro cell" index
currentCell->userData = macroIndex++;
//we init the current set of 'fused' points with the cell's points
CCLib::ReferenceCloud* currentPointSet = currentCell->points;
//get current fused set centroid and normal
CCVector3 currentCentroid = *CCLib::Neighbourhood(currentPointSet).getGravityCenter();
CCVector3 currentNormal(currentCell->planeEq);
//visited neighbors
ccKdTree::LeafSet visitedNeighbors;
//set of candidates
std::list<Candidate> candidates;
//we are going to iteratively look for neighbor cells that could be fused to this one
ccKdTree::LeafVector cellsToTest;
cellsToTest.push_back(currentCell);
if (progressCb && !nProgress.oneStep()) //process canceled by user
{
cancelled = true;
break;
}
while (!cellsToTest.empty() || !candidates.empty())
{
//get all neighbors around the 'waiting' cell(s)
//.........这里部分代码省略.........
示例13: createFacets
ccHObject* qFacets::createFacets( ccPointCloud* cloud,
CCLib::ReferenceCloudContainer& components,
unsigned minPointsPerComponent,
double maxEdgeLength,
bool randomColors,
bool& error)
{
if (!cloud)
return 0;
//we create a new group to store all input CCs as 'facets'
ccHObject* ccGroup = new ccHObject(cloud->getName()+QString(" [facets]"));
ccGroup->setDisplay(cloud->getDisplay());
ccGroup->setVisible(true);
bool cloudHasNormal = cloud->hasNormals();
//number of input components
size_t componentCount = components.size();
//progress notification
ccProgressDialog pDlg(true,m_app->getMainWindow());
pDlg.setMethodTitle("Facets creation");
pDlg.setInfo(qPrintable(QString("Components: %1").arg(componentCount)));
pDlg.setMaximum(static_cast<int>(componentCount));
pDlg.show();
QApplication::processEvents();
//for each component
error = false;
while (!components.empty())
{
CCLib::ReferenceCloud* compIndexes = components.back();
components.pop_back();
//if it has enough points
if (compIndexes && compIndexes->size() >= minPointsPerComponent)
{
ccPointCloud* facetCloud = cloud->partialClone(compIndexes);
if (!facetCloud)
{
//not enough memory!
error = true;
delete facetCloud;
facetCloud = 0;
}
else
{
ccFacet* facet = ccFacet::Create(facetCloud,static_cast<PointCoordinateType>(maxEdgeLength),true);
if (facet)
{
QString facetName = QString("facet %1 (rms=%2)").arg(ccGroup->getChildrenNumber()).arg(facet->getRMS());
facet->setName(facetName);
if (facet->getPolygon())
{
facet->getPolygon()->enableStippling(false);
facet->getPolygon()->showNormals(false);
}
if (facet->getContour())
{
facet->getContour()->setGlobalScale(facetCloud->getGlobalScale());
facet->getContour()->setGlobalShift(facetCloud->getGlobalShift());
}
//check the facet normal sign
if (cloudHasNormal)
{
CCVector3 N = ccOctree::ComputeAverageNorm(compIndexes,cloud);
if (N.dot(facet->getNormal()) < 0)
facet->invertNormal();
}
#ifdef _DEBUG
facet->showNormalVector(true);
#endif
//shall we colorize it with a random color?
ccColor::Rgb col, darkCol;
if (randomColors)
{
col = ccColor::Generator::Random();
assert(c_darkColorRatio <= 1.0);
darkCol.r = static_cast<ColorCompType>(static_cast<double>(col.r) * c_darkColorRatio);
darkCol.g = static_cast<ColorCompType>(static_cast<double>(col.g) * c_darkColorRatio);
darkCol.b = static_cast<ColorCompType>(static_cast<double>(col.b) * c_darkColorRatio);
}
else
{
//use normal-based HSV coloring
CCVector3 N = facet->getNormal();
PointCoordinateType dip, dipDir;
ccNormalVectors::ConvertNormalToDipAndDipDir(N, dip, dipDir);
FacetsClassifier::GenerateSubfamilyColor(col,dip,dipDir,0,1,&darkCol);
}
facet->setColor(col);
if (facet->getContour())
{
facet->getContour()->setColor(darkCol);
facet->getContour()->setWidth(2);
//.........这里部分代码省略.........
示例14: compute
int Cropper::compute()
{
ccHObject::Container outcrops = vombat::theInstance()->getAllObjectsSelectedBySPCDti(&spc::VirtualOutcrop::Type);
if (outcrops.size() > 1) {
LOG(INFO) << "please select only one virtual outcrop on which to operate";
return 1;
}
else if (outcrops.size() == 1) {
m_root_outcrop = dynamic_cast<ccVirtualOutcrop*>(outcrops.at(0));
}
else
m_root_outcrop = new ccVirtualOutcrop();
ccHObject::Container selections = m_dialog->getSelections();
// ccHObject::Container clouds = m_dialog->getClouds();
ccHObject::Container croppables = m_dialog->getCroppables();
LOG(INFO) << "found " << selections.size() << " to be processed";
// LOG(INFO) << "Found " << clouds.size() << " point clouds to be analyzed";
LOG(INFO) << "Found " << croppables.size() << " polylines";
// if (m_dialog->generateRegions())
// first create selections out of regions
for (ccHObject* obj : selections) {
ccPlanarSelection* sel = dynamic_cast<ccPlanarSelection*>(obj);
for (ccHObject* to_crop : croppables) {
if (to_crop->isA(CC_TYPES::POLY_LINE)) {
// if (to_crop->isA(CC_TYPES::POINT_CLOUD)) {
ccPolyline* pline = ccHObjectCaster::ToPolyline(to_crop);
ccPointCloud* vertices = dynamic_cast<ccPointCloud*>(pline->getAssociatedCloud());
ccPointCloud* cropped_vertices = sel->crop(vertices);
if (cropped_vertices) {
ccPolyline* cropped_pline = new ccPolyline(cropped_vertices);
cropped_pline->addPointIndex(0, cropped_vertices->size() - 1);
cropped_pline->setVisible(true);
// if (m_dialog->cropStrataTraces())
sel->addChild(cropped_pline);
}
}
else if (to_crop->isA(CC_TYPES::POINT_CLOUD)) {
LOG(INFO) << "cropping point cloud with name " << to_crop->getName().toStdString();
ccPointCloud* cloud = ccHObjectCaster::ToPointCloud(to_crop);
spc::PointCloudBase::Ptr asspc = spcCCPointCloud::fromccPointCloud(cloud);
spc::SelectionExtractor<Eigen::Vector3f, int> ext;
ext.setInputSet(asspc);
ext.setSelection(sel->getSPCElement<spc::SelectionBase<Eigen::Vector3f> >());
ext.compute();
std::vector<int> inside = ext.getInsideIds();
if (inside.size() == 0)
{
LOG(WARNING) << "the selection did not find anything inside it. Skipping";
continue;
}
CCLib::ReferenceCloud* ref = new CCLib::ReferenceCloud(cloud);
for (int i : inside) {
ref->addPointIndex(i);
}
ccPointCloud* outcloud = cloud->partialClone(ref);
LOG(INFO) << "done with cropping, calling add child on object: " << sel->getName().toStdString();
sel->addChild(outcloud);
newEntity(outcloud);
}
}
}
return 1;
}
示例15: removeHiddenPoints
CCLib::ReferenceCloud* qHPR::removeHiddenPoints(CCLib::GenericIndexedCloudPersist* theCloud, float viewPoint[], float fParam)
{
assert(theCloud);
unsigned i,nbPoints = theCloud->size();
if (nbPoints==0)
return 0;
CCLib::ReferenceCloud* newCloud = new CCLib::ReferenceCloud(theCloud);
//less than 4 points ? no need for calculation, we return the whole cloud
if (nbPoints<4)
{
if (!newCloud->reserve(nbPoints)) //well, we never know ;)
{
//not enough memory!
delete newCloud;
return 0;
}
newCloud->addPointIndex(0,nbPoints);
return newCloud;
}
//view point
coordT Cx = viewPoint[0];
coordT Cy = viewPoint[1];
coordT Cz = viewPoint[2];
float* radius = new float[nbPoints];
if (!radius)
{
//not enough memory!
delete newCloud;
return 0;
}
float r,maxRadius = 0.0;
//table of points
coordT* pt_array = new coordT[(nbPoints+1)*3];
coordT* _pt_array = pt_array;
theCloud->placeIteratorAtBegining();
//#define BACKUP_PROJECTED_CLOUDS
#ifdef BACKUP_PROJECTED_CLOUDS
FILE* fp = fopen("output_centered.asc","wt");
#endif
double x,y,z;
for (i=0;i<nbPoints;++i)
{
const CCVector3* P = theCloud->getNextPoint();
*(_pt_array++)=x=coordT(P->x)-Cx;
*(_pt_array++)=y=coordT(P->y)-Cy;
*(_pt_array++)=z=coordT(P->z)-Cz;
//we pre-compute the radius ...
r = (float)sqrt(x*x+y*y+z*z);
//in order to determine the max radius
if (maxRadius<r)
maxRadius = r;
radius[i] = r;
#ifdef BACKUP_PROJECTED_CLOUDS
fprintf(fp,"%f %f %f %f\n",x,y,z,r);
#endif
}
//we add the view point (Cf. HPR)
*(_pt_array++)=0.0;
*(_pt_array++)=0.0;
*(_pt_array++)=0.0;
#ifdef BACKUP_PROJECTED_CLOUDS
fprintf(fp,"%f %f %f %f\n",0,0,0,0);
fclose(fp);
#endif
maxRadius *= 2.0f*pow(10.0f,fParam);
_pt_array = pt_array;
#ifdef BACKUP_PROJECTED_CLOUDS
fp = fopen("output_transformed.asc","wt");
#endif
for (i=0;i<nbPoints;++i)
{
//Spherical flipping
r = maxRadius/radius[i]-1.0f;
#ifndef BACKUP_PROJECTED_CLOUDS
*(_pt_array++) *= double(r);
*(_pt_array++) *= double(r);
*(_pt_array++) *= double(r);
#else
x = *_pt_array * double(r);
*(_pt_array++) = x;
y = *_pt_array * double(r);
*(_pt_array++) = y;
z = *_pt_array * double(r);
*(_pt_array++) = z;
fprintf(fp,"%f %f %f %f\n",x,y,z,r);
#endif
}
#ifdef BACKUP_PROJECTED_CLOUDS
fclose(fp);
#endif
//.........这里部分代码省略.........