当前位置: 首页>>代码示例>>C++>>正文


C++ mat::zeros方法代码示例

本文整理汇总了C++中arma::mat::zeros方法的典型用法代码示例。如果您正苦于以下问题:C++ mat::zeros方法的具体用法?C++ mat::zeros怎么用?C++ mat::zeros使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在arma::mat的用法示例。


在下文中一共展示了mat::zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: solve_P

void uDIIS::solve_P(arma::mat & Pa, arma::mat & Pb) {
  arma::vec sol=get_w();
 
  // Form weighted density matrix
  Pa.zeros();
  Pb.zeros();
  for(size_t i=0;i<stack.size();i++) {
    Pa+=sol(i)*stack[i].Pa;
    Pb+=sol(i)*stack[i].Pb;
  }
}
开发者ID:Monkey---Brainz,项目名称:erkale,代码行数:11,代码来源:diis.cpp

示例2: solve_F

void uDIIS::solve_F(arma::mat & Fa, arma::mat & Fb) {
  arma::vec sol=get_w();
 
  // Form weighted Fock matrix
  Fa.zeros();
  Fb.zeros();
  for(size_t i=0;i<stack.size();i++) {
    Fa+=sol(i)*stack[i].Fa;
    Fb+=sol(i)*stack[i].Fb;
  }
}
开发者ID:Monkey---Brainz,项目名称:erkale,代码行数:11,代码来源:diis.cpp

示例3: backwardProb

void HMM<Distribution>::Backward(const arma::mat& dataSeq,
                                 const arma::vec& scales,
                                 arma::mat& backwardProb) const
{
  // Our goal is to calculate the backward probabilities:
  //  P(X_k | o_{k + 1:T}) for all possible states X_k, for each time point k.
  backwardProb.zeros(transition.n_rows, dataSeq.n_cols);

  // The last element probability is 1.
  backwardProb.col(dataSeq.n_cols - 1).fill(1);

  // Now step backwards through all other observations.
  for (size_t t = dataSeq.n_cols - 2; t + 1 > 0; t--)
  {
    for (size_t j = 0; j < transition.n_rows; j++)
    {
      // The backward probability of state j at time t is the sum over all state
      // of the probability of the next state having been a transition from the
      // current state multiplied by the probability of each of those states
      // emitting the given observation.
      for (size_t state = 0; state < transition.n_rows; state++)
        backwardProb(j, t) += transition(state, j) * backwardProb(state, t + 1)
            * emission[state].Probability(dataSeq.unsafe_col(t + 1));

      // Normalize by the weights from the forward algorithm.
      backwardProb(j, t) /= scales[t + 1];
    }
  }
}
开发者ID:dblalock,项目名称:mlpack-ios,代码行数:29,代码来源:hmm_impl.hpp

示例4: Gradient

void SGDTestFunction::Gradient(const arma::mat& coordinates,
                               const size_t begin,
                               arma::mat& gradient,
                               const size_t batchSize) const
{
  gradient.zeros(3);

  for (size_t i = begin; i < begin + batchSize; ++i)
  {
    switch (visitationOrder(i))
    {
      case 0:
        if (coordinates[0] >= 0)
          gradient[0] += std::exp(-coordinates[0]);
        else
          gradient[0] += -std::exp(coordinates[0]);
        break;

      case 1:
        gradient[1] += 2 * coordinates[1];
        break;

      case 2:
        gradient[2] += 4 * std::pow(coordinates[2], 3) + 6 * coordinates[2];
        break;
    }
  }

  gradient /= batchSize;
}
开发者ID:sbrodehl,项目名称:mlpack,代码行数:30,代码来源:test_function.cpp

示例5: Initialize

  inline static void Initialize(const MatType& V,
                                const size_t r,
                                arma::mat& W,
                                arma::mat& H)
  {
    const size_t n = V.n_rows;
    const size_t m = V.n_cols;

    if (columnsToAverage > m)
    {
      Log::Warn << "Number of random columns (columnsToAverage) is more than "
          << "the number of columns available in the V matrix; weird results "
          << "may ensue!" << std::endl;
    }

    W.zeros(n, r);

    // Initialize W matrix with random columns.
    for (size_t col = 0; col < r; col++)
    {
      for (size_t randCol = 0; randCol < columnsToAverage; randCol++)
      {
        // .col() does not work in this case, as of Armadillo 3.920.
        W.unsafe_col(col) += V.col(math::RandInt(0, m));
      }
    }

    // Now divide by p.
    W /= columnsToAverage;

    // Initialize H to random values.
    H.randu(r, m);
  }
开发者ID:0x0all,项目名称:mlpack,代码行数:33,代码来源:random_acol_init.hpp

示例6: GradientConstraint

void LovaszThetaSDP::GradientConstraint(const size_t index,
                                        const arma::mat& coordinates,
                                        arma::mat& gradient)
{
//  Log::Debug << "Gradient of constraint " << index << " is " << std::endl;
  if (index == 0) // This is the constraint Tr(X) = 1.
  {
    gradient = 2 * coordinates; // d/dR (Tr(R R^T)) = 2 R.
//    std::cout << gradient;
    return;
  }

//  Log::Debug << "Evaluating gradient of constraint " << index << " with ";
  size_t i = edges(0, index - 1);
  size_t j = edges(1, index - 1);
//  Log::Debug << "i = " << i << " and j = " << j << "." << std::endl;

  // Since the constraint is (R^T R)_ij, the gradient for (x, y) will be (I
  // derived this for one of the MVU constraints):
  //   0     , y != i, y != j
  //   2 R_xj, y  = i, y != j
  //   2 R_xi, y != i, y  = j
  //   4 R_xy, y  = i, y  = j
  // This results in the gradient matrix having two nonzero rows; for row
  // i, the elements are R_nj, where n is the row; for column j, the elements
  // are R_ni.
  gradient.zeros(coordinates.n_rows, coordinates.n_cols);

  gradient.col(i) = coordinates.col(j);
  gradient.col(j) += coordinates.col(i); // In case j = i (shouldn't happen).

//  std::cout << gradient;
}
开发者ID:0x0all,项目名称:mlpack,代码行数:33,代码来源:aug_lagrangian_test_functions.cpp

示例7: Gradient

void RegularizedSVDFunction::Gradient(const arma::mat& parameters,
                                      arma::mat& gradient) const
{
  // For an example with rating corresponding to user 'i' and item 'j', the
  // gradients for the parameters is as follows:
  //           grad(u(i)) = lambda * u(i) - error * v(j)
  //           grad(v(j)) = lambda * v(j) - error * u(i)
  // 'error' is the prediction error for that example, which is:
  //           rating(i, j) - u(i).t() * v(j)
  // The full gradient is calculated by summing the contributions over all the
  // training examples.

  gradient.zeros(rank, numUsers + numItems);

  for (size_t i = 0; i < data.n_cols; i++)
  {
    // Indices for accessing the the correct parameter columns.
    const size_t user = data(0, i);
    const size_t item = data(1, i) + numUsers;

    // Prediction error for the example.
    const double rating = data(2, i);
    double ratingError = rating - arma::dot(parameters.col(user),
                                            parameters.col(item));

    // Gradient is non-zero only for the parameter columns corresponding to the
    // example.
    gradient.col(user) += 2 * (lambda * parameters.col(user) -
                               ratingError * parameters.col(item));
    gradient.col(item) += 2 * (lambda * parameters.col(item) -
                               ratingError * parameters.col(user));
  }
}
开发者ID:sumedhghaisas,项目名称:mlpack,代码行数:33,代码来源:regularized_svd_function.cpp

示例8: Gradient

//! Calculate the gradient of one of the individual functions.
void GeneralizedRosenbrockFunction::Gradient(const arma::mat& coordinates,
                                             const size_t i,
                                             arma::mat& gradient) const
{
  gradient.zeros(n);

  gradient[i] = 400 * (std::pow(coordinates[i], 3) - coordinates[i] *
      coordinates[i + 1]) + 2 * (coordinates[i] - 1);
  gradient[i + 1] = 200 * (coordinates[i + 1] - std::pow(coordinates[i], 2));
}
开发者ID:YaweiZhao,项目名称:mlpack,代码行数:11,代码来源:test_functions.cpp

示例9: Estimate

void HMM<Distribution>::Smooth(const arma::mat& dataSeq,
                               arma::mat& smoothSeq) const
{
  // First run the forward algorithm.
  arma::mat stateProb;
  Estimate(dataSeq, stateProb);

  // Compute expected emissions.
  // Will not work for distributions without a Mean() function.
  smoothSeq.zeros(dimensionality, dataSeq.n_cols);
  for (size_t i = 0; i < emission.size(); i++)
    smoothSeq += emission[i].Mean() * stateProb.row(i);
}
开发者ID:shenzebang,项目名称:mlpack,代码行数:13,代码来源:hmm_impl.hpp

示例10: Evaluate

void RNN<
LayerTypes, OutputLayerType, InitializationRuleType, PerformanceFunction
>::Gradient(const arma::mat& /* unused */,
            const size_t i,
            arma::mat& gradient)
{
  if (gradient.is_empty())
  {
    gradient = arma::zeros<arma::mat>(parameter.n_rows, parameter.n_cols);
  }
  else
  {
    gradient.zeros();
  }

  Evaluate(parameter, i, false);

  arma::mat currentGradient = arma::mat(gradient.n_rows, gradient.n_cols);
  NetworkGradients(currentGradient, network);

  const arma::mat input = arma::mat(predictors.colptr(i), predictors.n_rows,
      1, false, true);

  // Iterate through the input sequence and perform the feed backward pass.
  for (seqNum = seqLen - 1; seqNum >= 0; seqNum--)
  {
    // Load the network activation for the upcoming backward pass.
    LoadActivations(input.rows(seqNum * inputSize, (seqNum + 1) *
        inputSize - 1), network);

    // Perform the backward pass.
    if (seqOutput)
    {
      arma::mat seqError = error.unsafe_col(seqNum);
      Backward(seqError, network);
    }
    else
    {
      Backward(error, network);
    }

    // Link the parameters and update the gradients.
    LinkParameter(network);
    UpdateGradients<>(network);

    // Update the overall gradient.
    gradient += currentGradient;

    if (seqNum == 0) break;
  }
}
开发者ID:AmesianX,项目名称:mlpack,代码行数:51,代码来源:rnn_impl.hpp

示例11: Gradient

//! Calculate the gradient of one of the individual functions.
void GeneralizedRosenbrockFunction::Gradient(const arma::mat& coordinates,
                                             const size_t i,
                                             arma::mat& gradient,
                                             const size_t batchSize) const
{
  gradient.zeros(n);

  for (size_t j = i; j < i + batchSize; ++j)
  {
    const size_t p = visitationOrder[j];
    gradient[p] = 400 * (std::pow(coordinates[p], 3) - coordinates[p] *
        coordinates[p + 1]) + 2 * (coordinates[p] - 1);
    gradient[p + 1] = 200 * (coordinates[p + 1] - std::pow(coordinates[p], 2));
  }
}
开发者ID:sbrodehl,项目名称:mlpack,代码行数:16,代码来源:test_functions.cpp

示例12: moveSize

void SA<FunctionType, CoolingScheduleType>::MoveControl(const size_t nMoves,
                                                        arma::mat& accept)
{
  arma::mat target;
  target.copy_size(accept);
  target.fill(0.44);
  moveSize = arma::log(moveSize);
  moveSize += gain * (accept / (double) nMoves - target);
  moveSize = arma::exp(moveSize);

  // To avoid the use of element-wise arma::min(), which is only available in
  // Armadillo after v3.930, we use a for loop here instead.
  for (size_t i = 0; i < accept.n_elem; ++i)
    moveSize(i) = (moveSize(i) > maxMove(i)) ? maxMove(i) : moveSize(i);

  accept.zeros();
}
开发者ID:0x0all,项目名称:mlpack,代码行数:17,代码来源:sa_impl.hpp

示例13: find_P

double find_P(const arma::mat& X, const arma::mat& Y, double sigma2,
              float outliers, arma::vec& P1, arma::vec& Pt1, arma::mat& PX,
              bool use_fgt, const float epsilon) {
    P1.zeros();
    Pt1.zeros();
    PX.zeros();

    const arma::uword N = X.n_rows;
    const arma::uword M = Y.n_rows;
    const arma::uword D = Y.n_cols;

    const double h = std::sqrt(2 * sigma2);
    const double ndi = (outliers * M * std::pow(2 * M_PI * sigma2, 0.5 * D)) /
                       ((1 - outliers) * N);
    arma::vec q = arma::ones<arma::vec>(M);

    fgt::GaussTransformUnqPtr transformY;
    if (use_fgt) {
        transformY = fgt::choose_gauss_transform(Y, h, epsilon);
    } else {
        transformY.reset(new fgt::Direct(Y, h));
    }
    arma::vec denomP = transformY->compute(X, q);

    denomP = denomP + ndi;
    Pt1 = 1 - ndi / denomP;
    q = 1 / denomP;

    fgt::GaussTransformUnqPtr transformX;
    if (use_fgt) {
        transformX = fgt::choose_gauss_transform(X, h, epsilon);
    } else {
        transformX.reset(new fgt::Direct(X, h));
    }
    P1 = transformX->compute(Y, q);

    for (arma::uword i = 0; i < D; ++i) {
        q = X.col(i) / denomP;
        arma::vec c = PX.unsafe_col(i);
        PX.col(i) = transformX->compute(Y, q);
    }

    return -arma::sum(arma::log(denomP)) + D * N * std::log(sigma2) / 2;
}
开发者ID:fedral,项目名称:cpd,代码行数:44,代码来源:find_P.cpp

示例14: Forward

void HMM<Distribution>::Filter(const arma::mat& dataSeq,
                               arma::mat& filterSeq,
                               size_t ahead) const
{
  // First run the forward algorithm.
  arma::mat forwardProb;
  arma::vec scales;
  Forward(dataSeq, scales, forwardProb);

  // Propagate state ahead.
  if (ahead != 0)
    forwardProb = pow(transition, ahead) * forwardProb;

  // Compute expected emissions.
  // Will not work for distributions without a Mean() function.
  filterSeq.zeros(dimensionality, dataSeq.n_cols);
  for (size_t i = 0; i < emission.size(); i++)
    filterSeq += emission[i].Mean() * forwardProb.row(i);
}
开发者ID:shenzebang,项目名称:mlpack,代码行数:19,代码来源:hmm_impl.hpp

示例15: norm

double mlpack::cf::SVDWrapper<Factorizer>::Apply(const arma::mat& V,
                         arma::mat& W,
                         arma::mat& sigma,
                         arma::mat& H) const
{
  // get svd factorization
  arma::vec E;
  factorizer.Apply(W, E, H, V);

  // construct sigma matrix
  sigma.zeros(V.n_rows, V.n_cols);

  for(size_t i = 0;i < sigma.n_rows && i < sigma.n_cols;i++)
    sigma(i, i) = E(i, 0);

  arma::mat V_rec = W * sigma * arma::trans(H);

  // return normalized frobenius error
  return arma::norm(V - V_rec, "fro") / arma::norm(V, "fro");
}
开发者ID:0x0all,项目名称:mlpack,代码行数:20,代码来源:svd_wrapper_impl.hpp


注:本文中的arma::mat::zeros方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。