当前位置: 首页>>代码示例>>C++>>正文


C++ mat::submat方法代码示例

本文整理汇总了C++中arma::mat::submat方法的典型用法代码示例。如果您正苦于以下问题:C++ mat::submat方法的具体用法?C++ mat::submat怎么用?C++ mat::submat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在arma::mat的用法示例。


在下文中一共展示了mat::submat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: calculate

double MultiKernel::calculate(arma::mat &x, int r1, arma::mat &x2, int r2){
    

    int dim1=x.n_rows;
    int dim2=x2.n_rows;
    int l = 0,h=0;
    
    
    double result=0;
    
    
    for (int i=0; i<features.size(); i++) {
        
        h+=features[i]->calculateFeatureDimension();
        
        

        arma::mat x_1_part=x.submat(0, l, dim1-1, h-1);
        arma::mat x_2_part=x2.submat(0, l, dim2-1, h-1);
        
        
        result+=this->kernels[i]->calculate(x_1_part, r1, x_2_part, r2);
        l=h;
    }
    
    return result;
    
}
开发者ID:brixen,项目名称:Antrack,代码行数:28,代码来源:MultiKernel.cpp

示例2: CrossValidation

/**
 * CrossValidation function runs a k-fold cross validation on the training data
 * by dividing the training data into k equal disjoint subsets. The model is
 * trained on k-1 of these subsets and 1 subset is used as validation data.
 *
 * This process is repeated k times assigning each subset to be the validation
 * data at most once.
 *
 * @params trainData The data available for training.
 * @params trainLabels The labels corresponding to the training data.
 * @params k The parameter k in k-fold cross validation.
 * @param hiddenLayerSize Hidden layer size.
 * @param maxEpochs Maximum number of epochs.
 * @param trainError Error of predictions on training data.
 * @param validationError Validation error of predictions.
*/
void CrossValidation(arma::mat& trainData,
                     const arma::mat& trainLabels,
                     const size_t k,
                     const size_t hiddenLayerSize,
                     const size_t maxEpochs,
                     double& trainError,
                     double& validationError)
{
  // Number of datapoints in each subset in K-fold CV.
  size_t validationDataSize = (int) trainData.n_cols / k;
  trainError = validationError = 0.0;

  for (size_t i = 0; i < trainData.n_cols; i = i + validationDataSize)
  {
    validationDataSize = (int) trainData.n_cols / k;

    // The collection of the k-1 subsets to be used in training in a particular
    // iteration.
    arma::mat validationTrainData(trainData.n_rows, trainData.n_cols);

    // The labels corresponding to training data.
    arma::mat validationTrainLabels(trainLabels.n_rows, trainLabels.n_cols);

    // The data subset which is used as validation data in a particular
    // iteration.
    arma::mat validationTestData(trainData.n_rows, validationDataSize);

    // The labels corresponding to the validation data.
    arma::mat validationTestLabels(trainLabels.n_rows, validationDataSize);

    if (i + validationDataSize > trainData.n_cols)
    {
      validationDataSize = trainData.n_cols - i;
    }

    validationTestData = trainData.submat(0, i, trainData.n_rows - 1,
        i + validationDataSize - 1);

    validationTestLabels = trainLabels.submat(0, i, trainLabels.n_rows - 1,
        i + validationDataSize - 1);

    validationTrainData = trainData;
    validationTrainData.shed_cols(i, i + validationDataSize - 1);

    validationTrainLabels = trainLabels;
    validationTrainLabels.shed_cols(i, i + validationDataSize - 1);

    double tError, vError;

    BuildVanillaNetwork(validationTrainData, validationTrainLabels,
        validationTestData, validationTestLabels, hiddenLayerSize, maxEpochs,
        validationTrainLabels.n_rows, tError, vError);

    trainError += tError;
    validationError += vError;
  }

  trainError /= k;
  validationError /= k;
}
开发者ID:arunreddy,项目名称:mlpack,代码行数:76,代码来源:ksinit_test.cpp

示例3: EvalParams

  void EvalParams(arma::mat const &parameters, size_t l1, size_t l2, size_t l3,
                  std::true_type /* unused */)
  {
    // w1, w2, b1 and b2 are not extracted separately, 'parameters' is directly
    // used in their place to avoid copying data. The following representations
    // are used:
    // w1 <- parameters.submat(0, 0, l1-1, l2-1)
    // w2 <- parameters.submat(l1, 0, l3-1, l2-1).t()
    // b1 <- parameters.submat(0, l2, l1-1, l2)
    // b2 <- parameters.submat(l3, 0, l3, l2-1).t()

    // Compute activations of the hidden and output layers.
    arma::mat tempInput = parameters.submat(0, 0, l1 - 1, l2 - 1) * data +
                          arma::repmat(parameters.submat(0, l2, l1 - 1, l2), 1, data.n_cols);
    hiddenLayerFunc.Forward(tempInput,
                            hiddenLayer);

    tempInput = parameters.submat(l1, 0, l3 - 1, l2 - 1).t() * hiddenLayer +
                arma::repmat(parameters.submat(l3, 0, l3, l2 - 1).t(), 1, data.n_cols);
    outputLayerFunc.Forward(tempInput,
                            outputLayer);

    // Average activations of the hidden layer.
    rhoCap = arma::sum(hiddenLayer, 1) / static_cast<double>(data.n_cols);
    // Difference between the reconstructed data and the original data.
    diff = outputLayer - data;
  }
开发者ID:aashusingh,项目名称:mlpack,代码行数:27,代码来源:sparse_autoencoder_function.hpp

示例4: AvgCrossValidation

/**
 * AvgCrossValidation function takes a dataset and runs CrossValidation "iter"
 * number of times and then return the average training and validation error.
 * It shuffles the dataset in every iteration.
 *
 * @params dataset The dataset inclusive of the labels. Assuming the last
 *                 "numLabels" number of rows are the labels which the model
 *                 has to predict.
 * @params numLabels number of rows which are the output labels in the dataset.
 * @params iter The number of times Cross Validation has to be run.
 * @params hiddenLayerSize The number of nodes in the hidden layer.
 * @params maxEpochs The maximum number of epochs for the training.
 * @param avgTrainError Average error.
 * @param validationError Average validation.
 */
void AvgCrossValidation(arma::mat& dataset,
                        const size_t numLabels,
                        const size_t iter,
                        const size_t hiddenLayerSize,
                        const size_t maxEpochs,
                        double& avgTrainError,
                        double& avgValidationError)
{
  avgValidationError = avgTrainError = 0.0;

  for (size_t i = 0; i < iter; ++i)
  {
    dataset = arma::shuffle(dataset, 1);

    arma::mat trainData = dataset.submat(0, 0, dataset.n_rows - 1 - numLabels,
        dataset.n_cols - 1);
    arma::mat trainLabels = dataset.submat(dataset.n_rows - numLabels, 0,
        dataset.n_rows - 1, dataset.n_cols - 1);

    double trainError, validationError;
    CrossValidation(trainData, trainLabels, 10, hiddenLayerSize, maxEpochs,
        trainError, validationError);

    avgTrainError += trainError;
    avgValidationError += validationError;
  }

  avgTrainError /= iter;
  avgValidationError /= iter;
}
开发者ID:arunreddy,项目名称:mlpack,代码行数:45,代码来源:ksinit_test.cpp

示例5: buildRhsLhsMatrix

void subspaceIdMoor::buildRhsLhsMatrix(arma::mat const &gam_inv, arma::mat const &gamm_inv, arma::mat const &R_,
	arma::uword i, arma::uword n, arma::uword ny, arma::uword nu, arma::mat &RHS, arma::mat &LHS){
	mat RhsUpper = join_horiz(gam_inv * R_.submat((2 * nu + ny)*i, 0, 2 * (nu + ny)*i - 1, (2 * nu + ny)*i - 1), zeros(n, ny));
	mat RhsLower = R_.submat(nu*i, 0, 2 * nu*i - 1, (2 * nu + ny)*i + ny - 1);
	RHS = join_vert(RhsUpper, RhsLower);
	mat LhsUpper = gamm_inv*R_.submat((2 * nu + ny)*i + ny, 0, 2 * (nu + ny)*i - 1, (2 * nu + ny)*i + ny - 1);
	mat LhsLower = R_.submat((2 * nu + ny)*i, 0, (2 * nu + ny)*i + ny - 1, (2 * nu + ny)*i + ny - 1);
	LHS = join_vert(LhsUpper, LhsLower);
}
开发者ID:caiofcm,项目名称:backup-functions,代码行数:9,代码来源:subspaceIdMoor_backup.cpp

示例6: buildNMatrix

void subspaceIdMoor::buildNMatrix(arma::uword k, arma::mat const &M, arma::mat const &L1, arma::mat const &L2, arma::mat const &X,
	arma::uword i, arma::uword n, arma::uword ny, arma::mat &N){
	mat Upper, Lower;
	Upper = join_horiz(M.cols((k - 1)*ny, ny*i - 1) - L1.cols((k-1)*ny, ny*i - 1), zeros(n, (k-1)*ny));
	Lower = join_horiz(-L2.cols((k - 1) * ny, ny*i - 1), zeros(ny, (k - 1)*ny));
	N = join_vert(Upper, Lower);
	if (k == 1)
		N.submat(n, 0, n + ny - 1, ny - 1) = eye(ny, ny) + N.submat(n, 0, n + ny - 1, ny - 1);
	N = N * X;
}
开发者ID:caiofcm,项目名称:backup-functions,代码行数:10,代码来源:subspaceIdMoor_backup.cpp

示例7: log

vmat::vmat(const arma::mat &x, const arma::uvec &rc1, const arma::uvec &rc2) {
  arma::mat x11 = x.submat(rc1,rc1);
  arma::mat x12 = x.submat(rc1,rc2);
  arma::mat x21 = x.submat(rc2,rc1);
  arma::mat x22 = x.submat(rc2,rc2);

  proj = x12*arma::inv(x22);
  vcov = x11-proj*x21;
  inv = arma::inv_sympd(vcov);
  loginvsqdet = log(1/sqrt(arma::det(vcov)));
}
开发者ID:kkholst,项目名称:mcif,代码行数:11,代码来源:vmat.cpp

示例8: Transform

void ColumnsToBlocks::Transform(const arma::mat& maximalInputs,
                                arma::mat& output)
{
  if (!IsPerfectSquare(maximalInputs.n_rows))
  {
    throw std::runtime_error("maximalInputs.n_rows should be perfect square");
  }

  if (blockHeight == 0 || blockWidth == 0)
  {
    size_t const squareRows =
        static_cast<size_t>(std::sqrt(maximalInputs.n_rows));
    blockHeight = squareRows;
    blockWidth = squareRows;
  }

  if (blockHeight * blockWidth != maximalInputs.n_rows)
  {
    throw std::runtime_error("blockHeight * blockWidth should "
                             "equal to maximalInputs.n_rows");
  }

  const size_t rowOffset = blockHeight+bufSize;
  const size_t colOffset = blockWidth+bufSize;
  output.ones(bufSize + rows * rowOffset,
              bufSize + cols * colOffset);
  output *= bufValue;

  size_t k = 0;
  const size_t maxSize = std::min(rows * cols, (size_t) maximalInputs.n_cols);
  for (size_t i = 0; i != rows; ++i)
  {
    for (size_t j = 0; j != cols; ++j)
    {
      // Now, copy the elements of the row to the output submatrix.
      const size_t minRow = bufSize + i * rowOffset;
      const size_t minCol = bufSize + j * colOffset;
      const size_t maxRow = i * rowOffset + blockHeight;
      const size_t maxCol = j * colOffset + blockWidth;

      output.submat(minRow, minCol, maxRow, maxCol) =
          arma::reshape(maximalInputs.col(k++), blockHeight, blockWidth);

      if (k >= maxSize)
        break;
    }
  }

  if (scale)
  {
    const double max = output.max();
    const double min = output.min();
    if ((max - min) != 0)
    {
      output = (output - min) / (max - min) * (maxRange - minRange) + minRange;
    }
  }
}
开发者ID:DCooksey,项目名称:SonicScalpel,代码行数:58,代码来源:columns_to_blocks.cpp

示例9: MaximalInputs

void MaximalInputs(const arma::mat& parameters, arma::mat& output)
{
  arma::mat paramTemp(parameters.submat(0, 0, (parameters.n_rows - 1) / 2 - 1,
                                        parameters.n_cols - 2).t());
  double const mean = arma::mean(arma::mean(paramTemp));
  paramTemp -= mean;

  NormalizeColByMax(paramTemp, output);
}
开发者ID:DCooksey,项目名称:SonicScalpel,代码行数:9,代码来源:maximal_inputs.cpp

示例10: optCoef

unsigned int optCoef(arma::mat& weights, const arma::icube& obs, const arma::cube& emission,
    const arma::mat& initk, const arma::cube& beta, const arma::mat& scales, arma::mat& coef,
    const arma::mat& X, const arma::ivec& cumsumstate, const arma::ivec& numberOfStates,
    int trace) {

  int iter = 0;
  double change = 1.0;
  while ((change > 1e-10) & (iter < 100)) {
    arma::vec tmpvec(X.n_cols * (weights.n_rows - 1));
    bool solve_ok = arma::solve(tmpvec, hCoef(weights, X),
        gCoef(obs, beta, scales, emission, initk, weights, X, cumsumstate, numberOfStates));
    if (solve_ok == false) {
      return (4);
    }

    arma::mat coefnew(coef.n_rows, coef.n_cols - 1);
    for (unsigned int i = 0; i < (weights.n_rows - 1); i++) {
      coefnew.col(i) = coef.col(i + 1) - tmpvec.subvec(i * X.n_cols, (i + 1) * X.n_cols - 1);
    }
    change = arma::accu(arma::abs(coef.submat(0, 1, coef.n_rows - 1, coef.n_cols - 1) - coefnew))
        / coefnew.n_elem;
    coef.submat(0, 1, coef.n_rows - 1, coef.n_cols - 1) = coefnew;
    iter++;
    if (trace == 3) {
      Rcout << "coefficient optimization iter: " << iter;
      Rcout << " new coefficients: " << std::endl << coefnew << std::endl;
      Rcout << " relative change: " << change << std::endl;
    }
    weights = exp(X * coef).t();
    if (!weights.is_finite()) {
      return (5);
    }
    weights.each_row() /= sum(weights, 0);

  }
  return (0);
}
开发者ID:wondek,项目名称:seqHMM,代码行数:37,代码来源:optCoef.cpp

示例11: norm

double mlpack::cf::SVDWrapper<DummyClass>::Apply(const arma::mat& V,
                                     size_t r,
                                     arma::mat& W,
                                     arma::mat& H) const
{
  // check if the given rank is valid
  if(r > V.n_rows || r > V.n_cols)
  {
    Log::Info << "Rank " << r << ", given for decomposition is invalid." << std::endl;
    r = (V.n_rows > V.n_cols) ? V.n_cols : V.n_rows;
    Log::Info << "Setting decomposition rank to " << r << std::endl;
  }

  // get svd factorization
  arma::vec sigma;
  arma::svd(W, sigma, H, V);

  // remove the part of W and H depending upon the value of rank
  W = W.submat(0, 0, W.n_rows - 1, r - 1);
  H = H.submat(0, 0, H.n_cols - 1, r - 1);

  // take only required eigenvalues
  sigma = sigma.subvec(0, r - 1);

  // eigenvalue matrix is multiplied to W
  // it can either be multiplied to H matrix
  W = W * arma::diagmat(sigma);

  // take transpose of the matrix H as required by CF module
  H = arma::trans(H);

  // reconstruct the matrix
  arma::mat V_rec = W * H;

  // return the normalized frobenius norm
  return arma::norm(V - V_rec, "fro") / arma::norm(V, "fro");
}
开发者ID:0x0all,项目名称:mlpack,代码行数:37,代码来源:svd_wrapper_impl.hpp

示例12: loglikelihoodLogitCpp_t

// [[Rcpp::export]]
double loglikelihoodLogitCpp_t(const arma::vec& beta, const arma::mat& sigma, const arma::vec& sigmaType, const arma::vec& u, 
const arma::vec& df, const arma::vec& kKi, const arma::vec& kLh, const arma::vec& kLhi, const arma::vec& kY, const arma::mat& kX, const arma::mat& kZ) {
  double value = 0; /** The value to be returned */
  
  int nObs = kY.n_elem;
  int kP = kX.n_cols;  /** Dimension of Beta */
  int kK = kZ.n_cols;  /** Dimension of U */
  int kR = kKi.n_elem; /** Number of variance components */
  // int kL = sum(kLh);   /** Number of subvariance components */
  
  
  
  /** sum of yij * (wij - log(1 + ...))
   *  This corresponds to the 
  */
  for (int i = 0; i < nObs; i++) {
    double wij = 0;
    for (int j = 0; j < kP; j++) {
      wij += kX(i, j) * beta(j);
    }
    
    for (int j = 0; j < kK; j++) {
      wij += kZ(i, j) * u(j);
    }
    value += kY(i) * wij - log(1 + exp(wij));
  }
  
  int from = 0;
  int to = - 1;
  int counter = 0;
  for (int i = 0; i < kR; i++) {
    for (int j = 0; j < kLh(i); j++) {
      // std::cout<<i<<"\n";
      to += kLhi(counter);
      // std::cout<<"from:"<<from<<'\n';
      // std::cout<<"to:"<<to<<'\n';
      // std::cout<<sigmaType(i)<<"\n";
      // std::cout<<kron(arma::mat(kLhi(counter), kLhi(counter), arma::fill::eye), getSigma(sigma.row(i).t()))<<"\n";
      value += ldmt(u.subvec(from, to), df(counter), sigma.submat(from, from, to, to), sigmaType(i));
      from = to + 1;
      counter += 1;
    }
  }
  
  
  return value;
}
开发者ID:cran,项目名称:mcemGLM,代码行数:48,代码来源:loglikelihoodLogit_t.cpp

示例13: getPowerSpec

// get a power spectrum from the samples
arma::mat getPowerSpec(arma::mat samples)
{
	int winpts = round(wintime * data.sampleRate); // points in a window
	int steppts = round(steptime * data.sampleRate); // points in a step
	int winnum = (data.totalFrames - winpts) / steppts + 1; // how many windows
	int nfft = pow(2.0, ceil(log((double)winpts) / log(2.0))); // fft numbers

	arma::mat powerSpec(nfft, winnum);
	arma::mat hamming = makeHamming(winpts);

	// for each window, do hamming window and get the power spectrum
	for (int i = 0; i < winnum; i++) {
		int start = i * steppts;
		int end = start + winpts - 1;
		arma::mat winsamples = samples.submat(0, start, 0, end);
		winsamples = winsamples % hamming; // element-wise multiplication, do hamming window
		powerSpec.col(i) = powerFFT(trans(winsamples), nfft); // do fft and get power spectrum
	}
	return powerSpec;
}
开发者ID:kthsdwwl,项目名称:speech-recognition-practice,代码行数:21,代码来源:wav2feat.cpp

示例14: getJacobianForTasks

arma::mat InverseKinematicJacobian::getJacobianForTasks(KinematicTree const& tree, std::vector<const Task*> const& tasks, arma::mat &jacobianRAW, bool normalize) const
{
	const uint32_t numTasks = tasks.size();
	uint numCols = tree.getMotorCnt();

	arma::mat jacobian = arma::zeros(1, numCols);
	if ((0 < numTasks) &&
		(0 < numCols)) /* at least one task and at least one motor */
	{
		/* calculate the size of the jacobian and the task vector */
		uint32_t numRows = 0;
		for (const Task* const &task : tasks)
		{
			if (task->hasTarget()) {
				numRows += task->getDimensionCnt();
			}
		}

		/* build the "big" jacobian */
		jacobian = arma::zeros(numRows, numCols);
		jacobianRAW = arma::zeros(numRows, numCols);

		uint32_t beginRow = 0;
		for (const Task *const &task : tasks)
		{
			if (task->hasTarget())
			{
				const uint32_t endRow = beginRow + task->getDimensionCnt() - 1;
				arma::mat jacobianRawSub;
				jacobian.submat(beginRow, 0, endRow, numCols - 1) = task->getJacobianForTask(tree, jacobianRawSub, normalize);
				jacobianRAW.submat(beginRow, 0, endRow, numCols - 1) = jacobianRawSub;

				beginRow = endRow + 1;
			}
		}
	}

	return jacobian;
}
开发者ID:dtbinh,项目名称:kinematicEngine,代码行数:39,代码来源:inverseKinematicJacobian.cpp

示例15: predictAll

arma::rowvec MultiKernel::predictAll(arma::mat &newX,std::vector<supportData*>& S,int B){
    using namespace arma;
    
    // preprocess first
    preprocess(S,B);
    
    int n=newX.n_rows;
    
    mat y_hat(1,1,fill::zeros);
    mat y(1,1,fill::zeros);
    
    rowvec scores(n,fill::ones);
    
    int dim1=newX.n_rows;
    int l = 0,h=0;
    std::vector<arma::mat> new_x;
    
    for (int i=0; i<this->features.size(); i++) {
        h+=features[i]->calculateFeatureDimension();
        arma::mat x_1_part=newX.submat(0, l, dim1-1, h-1);
        new_x.push_back(x_1_part);
        l=h;
    }
    
    for (int k = 0; k < newX.n_rows; ++k) {
        
        y(0)=k;
        double current=0;
        
        
        for (int i = 0; i < S.size(); ++i) {
            int dim2=S[i]->x->n_rows;
            l=0;
            h=0;
            std::vector<arma::mat> old_x;
            
            
            for (int j=0; j<this->features.size(); j++) {
                h+=features[j]->calculateFeatureDimension();
                arma::mat x_2_part=S[i]->x->submat(0, l, dim2-1, h-1);
                old_x.push_back(x_2_part);
                l=h;
            }
            
            for (int yhat = 0; yhat < S[i]->x->n_rows; ++yhat) {
                
                y_hat(0)=yhat;
                
                if ((*S[i]->beta)[yhat]!=0){
                    
                    // the below has to be multiplied by the velocities kernel
//                    current+= (*S[i]->beta)[yhat]*
//                    calculate(newX, y(0), *S[i]->x, y_hat(0));
                    
                    for (int j=0; j<this->features.size(); j++) {
                        current+=(*S[i]->beta)[yhat]*this->kernels[j]->calculate(new_x[j], y(0), old_x[j], y_hat(0));
                    }
                    
                }
            }
            
        }
        
        scores[k]=current;
        
        
    }
    
    return scores;
}
开发者ID:brixen,项目名称:Antrack,代码行数:70,代码来源:MultiKernel.cpp


注:本文中的arma::mat::submat方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。