当前位置: 首页>>代码示例>>C++>>正文


C++ population::problem方法代码示例

本文整理汇总了C++中population::problem方法的典型用法代码示例。如果您正苦于以下问题:C++ population::problem方法的具体用法?C++ population::problem怎么用?C++ population::problem使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在population的用法示例。


在下文中一共展示了population::problem方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: evolve

/// Evolve method.
void monte_carlo::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type pop_size = pop.size();
	// Get out if there is nothing to do.
	if (pop_size == 0 || m_max_eval == 0) {
		return;
	}
	// Initialise temporary decision vector, fitness vector and decision vector.
	decision_vector tmp_x(prob_dimension);
	fitness_vector tmp_f(prob.get_f_dimension());
	constraint_vector tmp_c(prob.get_c_dimension());
	// Main loop.
	for (std::size_t i = 0; i < m_max_eval; ++i) {
		// Generate a random decision vector.
		for (problem::base::size_type j = 0; j < prob_dimension - prob_i_dimension; ++j) {
			tmp_x[j] = boost::uniform_real<double>(lb[j],ub[j])(m_drng);
		}
		for (problem::base::size_type j = prob_dimension - prob_i_dimension; j < prob_dimension; ++j) {
			tmp_x[j] = boost::uniform_int<int>(lb[j],ub[j])(m_urng);
		}
		// Compute fitness and constraints.
		prob.objfun(tmp_f,tmp_x);
		prob.compute_constraints(tmp_c,tmp_x);
		// Locate the worst individual.
		const population::size_type worst_idx = pop.get_worst_idx();
		if (prob.compare_fc(tmp_f,tmp_c,pop.get_individual(worst_idx).cur_f,pop.get_individual(worst_idx).cur_c)) {
			pop.set_x(worst_idx,tmp_x);
		}
	}
}
开发者ID:DinCahill,项目名称:pagmo,代码行数:35,代码来源:monte_carlo.cpp

示例2: update_c_scaling

/**
 * Updates the constraints scaling vector with the given population.
 * @param[in] population pop.
 */
void cstrs_self_adaptive::update_c_scaling(const population &pop)
{
	if(*m_original_problem != pop.problem()) {
		pagmo_throw(value_error,"The problem linked to the population is not the same as the problem given in argument.");
	}

	// Let's store some useful variables.
	const population::size_type pop_size = pop.size();

	// get the constraints dimension
	//constraint_vector c(m_original_problem->get_c_dimension(), 0.);
	problem::base::c_size_type prob_c_dimension = m_original_problem->get_c_dimension();
	problem::base::c_size_type number_of_eq_constraints =
			m_original_problem->get_c_dimension() -
			m_original_problem->get_ic_dimension();

	const std::vector<double> &c_tol = m_original_problem->get_c_tol();

	m_c_scaling.resize(m_original_problem->get_c_dimension());
	std::fill(m_c_scaling.begin(),m_c_scaling.end(),0.);

	// evaluates the scaling factor
	for(population::size_type i=0; i<pop_size; i++) {
		// updates the current constraint vector
		const population::individual_type &current_individual = pop.get_individual(i);

		const constraint_vector &c = current_individual.cur_c;

		// computes scaling with the right definition of the constraints (can be in base problem? currently used
		// by con2mo as well)
		for(problem::base::c_size_type j=0; j<number_of_eq_constraints; j++) {
			m_c_scaling[j] = std::max(m_c_scaling[j], std::max(0., (std::abs(c.at(j)) - c_tol.at(j))) );
		}
		for(problem::base::c_size_type j=number_of_eq_constraints; j<prob_c_dimension; j++) {
			m_c_scaling[j] = std::max(m_c_scaling[j], std::max(0., c.at(j) - c_tol.at(j)) );
		}
	}
}
开发者ID:DinCahill,项目名称:pagmo,代码行数:42,代码来源:cstrs_self_adaptive.cpp

示例3:

/**
 * Constructor using initial constrained problem
 *
 * Note: This problem is not inteded to be used by itself. Instead use the
 * self-adaptive algorithm if you want to solve constrained problems.
 *
 * @param[in] problem base::problem to be modified to use a self-adaptive
 * as constraints handling technique.
 * @param[in] pop population to be used to set up the penalty coefficients.
 *
 */
cstrs_self_adaptive::cstrs_self_adaptive(const base &problem, const population &pop):
	base_meta(
		 problem,
		 problem.get_dimension(),
		 problem.get_i_dimension(),
		 problem.get_f_dimension(),
		 0,
		 0,
		 std::vector<double>()),
	m_apply_penalty_1(false),
	m_scaling_factor(0.0),
	m_c_scaling(problem.get_c_dimension(),0.0),
	m_f_hat_down(problem.get_f_dimension(),0.0),
	m_f_hat_up(problem.get_f_dimension(),0.0),
	m_f_hat_round(problem.get_f_dimension(),0.0),
	m_i_hat_down(0.0),
	m_i_hat_up(0.0),
	m_i_hat_round(0.0),
	m_map_fitness(),
	m_map_constraint(),
	m_decision_vector_hash()
{
	if(m_original_problem->get_c_dimension() <= 0){
		pagmo_throw(value_error,"The original problem has no constraints.");
	}

	// check that the dimension of the problem is 1
	if (m_original_problem->get_f_dimension() != 1) {
		pagmo_throw(value_error,"The original fitness dimension of the problem must be one, multi objective problems can't be handled with self adaptive meta problem.");
	}

	if(problem != pop.problem()) {
		pagmo_throw(value_error,"The problem linked to the population is not the same as the problem given in argument.");
	}

	update_penalty_coeff(pop);
}
开发者ID:DinCahill,项目名称:pagmo,代码行数:48,代码来源:cstrs_self_adaptive.cpp

示例4: evolve

void sa_corana::evolve(population &pop) const {

	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type NP = pop.size();
	const problem::base::size_type Dc = D - prob_i_dimension;

	//We perform some checks to determine wether the problem/population are suitable for sa_corana
	if ( Dc == 0 ) {
		pagmo_throw(value_error,"There is no continuous part in the problem decision vector for sa_corana to optimise");
	}

	if ( prob_c_dimension != 0 ) {
		pagmo_throw(value_error,"The problem is not box constrained and sa_corana is not suitable to solve it");
	}

	if ( prob_f_dimension != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and sa_corana is not suitable to solve it");
	}

	//Determines the number of temperature adjustment for the annealing procedure
	const size_t n_T = m_niter / (m_step_adj * m_bin_size * Dc);

	// Get out if there is nothing to do.
	if (NP == 0 || m_niter == 0) {
		return;
	}
	if (n_T == 0) {
		pagmo_throw(value_error,"n_T is zero, increase niter");
	}

	//Starting point is the best individual
	const int bestidx = pop.get_best_idx();
	const decision_vector &x0 = pop.get_individual(bestidx).cur_x;
	const fitness_vector &fit0 = pop.get_individual(bestidx).cur_f;
	//Determines the coefficient to dcrease the temperature
	const double Tcoeff = std::pow(m_Tf/m_Ts,1.0/(double)(n_T));
	//Stores the current and new points
	decision_vector xNEW = x0, xOLD = xNEW;
	fitness_vector fNEW = fit0, fOLD = fNEW;
	//Stores the adaptive steps of each component (integer part included but not used)
	decision_vector step(D,m_range);

	//Stores the number of accepted points per component (integer part included but not used)
	std::vector<int> acp(D,0) ;
	double ratio = 0, currentT = m_Ts, probab = 0;

	//Main SA loops
	for (size_t jter = 0; jter < n_T; ++jter) {
		for (int mter = 0; mter < m_step_adj; ++mter) {
			for (int kter = 0; kter < m_bin_size; ++kter) {
				size_t nter = boost::uniform_int<int>(0,Dc-1)(m_urng);
				for (size_t numb = 0; numb < Dc ; ++numb) {
					nter = (nter + 1) % Dc;
					//We modify the current point actsol by mutating its nter component within
					//a step that we will later adapt
					xNEW[nter] = xOLD[nter] + boost::uniform_real<double>(-1,1)(m_drng) * step[nter] * (ub[nter]-lb[nter]);

					// If new solution produced is infeasible ignore it
					if ((xNEW[nter] > ub[nter]) || (xNEW[nter] < lb[nter])) {
						xNEW[nter]=xOLD[nter];
						continue;
					}
					//And we valuate the objective function for the new point
					prob.objfun(fNEW,xNEW);

					// We decide wether to accept or discard the point
					if (prob.compare_fitness(fNEW,fOLD) ) {
						//accept
						xOLD[nter] = xNEW[nter];
						fOLD = fNEW;
						acp[nter]++;	//Increase the number of accepted values
					} else {
						//test it with Boltzmann to decide the acceptance
						probab = exp ( - fabs(fOLD[0] - fNEW[0] ) / currentT );

						// we compare prob with a random probability.
						if (probab > m_drng()) {
							xOLD[nter] = xNEW[nter];
							fOLD = fNEW;
							acp[nter]++;	//Increase the number of accepted values
						} else {
							xNEW[nter] = xOLD[nter];
						}
					} // end if
				} // end for(nter = 0; ...
			} // end for(kter = 0; ...
			// adjust the step (adaptively)
			for (size_t iter = 0; iter < Dc; ++iter) {
				ratio = (double)acp[iter]/(double)m_bin_size;
				acp[iter] = 0;  //reset the counter
				if (ratio > .6) {
					//too many acceptances, increase the step by a factor 3 maximum
					step[iter] = step [iter] * (1 + 2 *(ratio - .6)/.4);
				} else {
					if (ratio < .4) {
						//too few acceptance, decrease the step by a factor 3 maximum
						step [iter]= step [iter] / (1 + 2 * ((.4 - ratio)/.4));
//.........这里部分代码省略.........
开发者ID:irwenqiang,项目名称:pagmo,代码行数:101,代码来源:sa_corana.cpp

示例5: evolve

/**
 * Runs the NN_TSP algorithm.
 *
 * @param[in,out] pop input/output pagmo::population to be evolved.
 */
void nn_tsp::evolve(population &pop) const
{
	const problem::base_tsp* prob;
	//check if problem is of type pagmo::problem::base_tsp
	try
	{
	    prob = &dynamic_cast<const problem::base_tsp &>(pop.problem());
	}
	catch (const std::bad_cast& e)
	{
		pagmo_throw(value_error,"Problem not of type pagmo::problem::tsp, nn_tsp can only be called on problem::tsp problems");
	}

	// Let's store some useful variables.
	const problem::base::size_type Nv = prob->get_n_cities();

	//create individuals
	decision_vector best_tour(Nv);
	decision_vector new_tour(Nv);

	//check input parameter
	if (m_start_city < -1 || m_start_city > static_cast<int>(Nv-1)) {
		pagmo_throw(value_error,"invalid value for the first vertex");
	}


	size_t first_city, Nt;
	if(m_start_city == -1){
		first_city = 0;  
	  		Nt = Nv;
	}
	else{
		first_city = m_start_city; 
		Nt = m_start_city+1;
	}

	int length_best_tour, length_new_tour;
	size_t nxt_city, min_idx;
	std::vector<int> not_visited(Nv);
	length_best_tour = 0;

	//main loop
	for (size_t i = first_city; i < Nt; i++) {
		length_new_tour = 0;
		for (size_t j = 0; j < Nv; j++) {
			not_visited[j] = j;
		}
		new_tour[0] = i;
		std::swap(not_visited[new_tour[0]],not_visited[Nv-1]);
		for (size_t j = 1; j < Nv-1; j++) {
			min_idx = 0;
			nxt_city = not_visited[0];
			for (size_t l = 1; l < Nv-j; l++) {
				if(prob->distance(new_tour[j-1], not_visited[l]) < prob->distance(new_tour[j-1], nxt_city) )
			{
					min_idx = l;		
					nxt_city = not_visited[l];}
			}
			new_tour[j] = nxt_city;
			length_new_tour += prob->distance(new_tour[j-1], nxt_city);
			std::swap(not_visited[min_idx],not_visited[Nv-j-1]);
		}
		new_tour[Nv-1] = not_visited[0];
		length_new_tour += prob->distance(new_tour[Nv-2], new_tour[Nv-1]);
		length_new_tour += prob->distance(new_tour[Nv-1], new_tour[0]);
		if(i == first_city || length_new_tour < length_best_tour){
			best_tour = new_tour;
			length_best_tour = length_new_tour;
		}
	}
		
	//change representation of tour
	population::size_type best_idx = pop.get_best_idx();
	switch( prob->get_encoding() ) {
	    case problem::base_tsp::FULL:
	        pop.set_x(best_idx,prob->cities2full(best_tour));
	        break;
	    case problem::base_tsp::RANDOMKEYS:
	        pop.set_x(best_idx,prob->cities2randomkeys(best_tour,pop.get_individual(best_idx).cur_x));
	        break;
	    case problem::base_tsp::CITIES:
	        pop.set_x(best_idx,best_tour);
	        break;
	}

} // end of evolve
开发者ID:DinCahill,项目名称:pagmo,代码行数:91,代码来源:nn_tsp.cpp

示例6: evolve

/**
 * The best member of the population will be used as starting point for the minimisation process. The algorithm will stop
 * if the gradient falls below the grad_tol parameter, if the maximum number of iterations max_iter is exceeded or if
 * the inner GSL routine call reports an error (which will be logged on std::cout). After the end of the minimisation process,
 * the minimised decision vector will replace the best individual in the population, after being modified to fall within
 * the problem bounds if necessary.
 *
 * @param[in,out] pop population to evolve.
 */
void gsl_gradient::evolve(population &pop) const
{
	// Do nothing if the population is empty.
	if (!pop.size()) {
		return;
	}
	// Useful variables.
	const problem::base &problem = pop.problem();
	if (problem.get_f_dimension() != 1) {
		pagmo_throw(value_error,"this algorithm does not support multi-objective optimisation");
	}
	if (problem.get_c_dimension()) {
		pagmo_throw(value_error,"this algorithm does not support constrained optimisation");
	}
	const problem::base::size_type cont_size = problem.get_dimension() - problem.get_i_dimension();
	if (!cont_size) {
		pagmo_throw(value_error,"the problem has no continuous part");
	}
	// Extract the best individual.
	const population::size_type best_ind_idx = pop.get_best_idx();
	const population::individual_type &best_ind = pop.get_individual(best_ind_idx);
	// GSL wrapper parameters structure.
	objfun_wrapper_params params;
	params.p = &problem;
	// Integer part of the temporay decision vector must be filled with the integer part of the best individual,
	// which will not be optimised.
	params.x.resize(problem.get_dimension());
	std::copy(best_ind.cur_x.begin() + cont_size, best_ind.cur_x.end(), params.x.begin() + cont_size);
	params.f.resize(1);
	params.step_size = m_numdiff_step_size;
	// GSL function structure.
	gsl_multimin_function_fdf gsl_func;
	gsl_func.n = boost::numeric_cast<std::size_t>(cont_size);
	gsl_func.f = &objfun_wrapper;
	gsl_func.df = &d_objfun_wrapper;
	gsl_func.fdf = &fd_objfun_wrapper;
	gsl_func.params = (void *)&params;
	// Minimiser.
	gsl_multimin_fdfminimizer *s = 0;
	// This will be the starting point.
	gsl_vector *x = 0;
	// Here we start the allocations.
	// Recast as size_t here, in order to avoid potential overflows later.
	const std::size_t s_cont_size = boost::numeric_cast<std::size_t>(cont_size);
	// Allocate and check the allocation results.
	x = gsl_vector_alloc(s_cont_size);
	const gsl_multimin_fdfminimizer_type *minimiser = get_gsl_minimiser_ptr();
	pagmo_assert(minimiser);
	s = gsl_multimin_fdfminimizer_alloc(minimiser,s_cont_size);
	// Check the allocations.
	check_allocs(x,s);
	// Fill in the starting point (from the best individual).
	for (std::size_t i = 0; i < s_cont_size; ++i) {
		gsl_vector_set(x,i,best_ind.cur_x[i]);
	}
	// Init the solver.
	gsl_multimin_fdfminimizer_set(s,&gsl_func,x,m_step_size,m_tol);
	// Iterate.
	std::size_t iter = 0;
	int status;
	try {
		do
		{
			++iter;
			status = gsl_multimin_fdfminimizer_iterate(s);
			if (status) {
				break;
			}
			status = gsl_multimin_test_gradient(s->gradient,m_grad_tol);
		} while (status == GSL_CONTINUE && iter < m_max_iter);
	} catch (const std::exception &e) {
		// Cleanup and re-throw.
		cleanup(x,s);
		throw e;
	} catch (...) {
		// Cleanup and throw.
		cleanup(x,s);
		pagmo_throw(std::runtime_error,"unknown exception caught in gsl_gradient::evolve");
	}
	// Free up resources.
	cleanup(x,s);
	// Check the generated individual and change it to respect the bounds as necessary.
	for (problem::base::size_type i = 0; i < cont_size; ++i) {
		if (params.x[i] < problem.get_lb()[i]) {
			params.x[i] = problem.get_lb()[i];
		}
		if (params.x[i] > problem.get_ub()[i]) {
			params.x[i] = problem.get_ub()[i];
		}
	}
	// Replace the best individual.
//.........这里部分代码省略.........
开发者ID:DominicDirkx,项目名称:pagmo,代码行数:101,代码来源:gsl_gradient.cpp

示例7: evolve

void ihs::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type pop_size = pop.size();
	// Get out if there is nothing to do.
	if (pop_size == 0 || m_gen == 0) {
		return;
	}
	decision_vector lu_diff(prob_dimension);
	for (problem::base::size_type i = 0; i < prob_dimension; ++i) {
		lu_diff[i] = ub[i] - lb[i];
	}
	// Int distribution to be used when picking random individuals.
	boost::uniform_int<population::size_type> uni_int(0,pop_size - 1);
	const double c = std::log(m_bw_min/m_bw_max) / m_gen;
	// Temporary individual used during evolution.
	population::individual_type tmp;
	tmp.cur_x.resize(prob_dimension);
	tmp.cur_f.resize(prob.get_f_dimension());
	tmp.cur_c.resize(prob.get_c_dimension());
	for (std::size_t g = 0; g < m_gen; ++g) {
		const double ppar_cur = m_ppar_min + ((m_ppar_max - m_ppar_min) * g) / m_gen, bw_cur = m_bw_max * std::exp(c * g);
		// Continuous part.
		for (problem::base::size_type i = 0; i < prob_dimension - prob_i_dimension; ++i) {
			if (m_drng() < m_phmcr) {
				// tmp's i-th chromosome element is the one from a randomly chosen individual.
				tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i];
				// Do pitch adjustment with ppar_cur probability.
				if (m_drng() < ppar_cur) {
					// Randomly, add or subtract pitch from the current chromosome element.
					if (m_drng() > .5) {
						tmp.cur_x[i] += m_drng() * bw_cur * lu_diff[i];
					} else {
						tmp.cur_x[i] -= m_drng() * bw_cur * lu_diff[i];
					}
					// Handle the case in which we added or subtracted too much and ended up out
					// of boundaries.
					if (tmp.cur_x[i] > ub[i]) {
						tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
					} else if (tmp.cur_x[i] < lb[i]) {
						tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
					}
				}
			} else {
				// Pick randomly within the bounds.
				tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
			}
		}

		//Integer Part
		for (problem::base::size_type i = prob_dimension - prob_i_dimension; i < prob_dimension; ++i) {
			if (m_drng() < m_phmcr) {
				tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i];
				if (m_drng() < ppar_cur) {
					if (m_drng() > .5) {
						tmp.cur_x[i] += double_to_int::convert(m_drng() * bw_cur * lu_diff[i]);
					} else {
						tmp.cur_x[i] -= double_to_int::convert(m_drng() * bw_cur * lu_diff[i]);
					}
					// Wrap over in case we went past the bounds.
					if (tmp.cur_x[i] > ub[i]) {
						tmp.cur_x[i] = lb[i] + double_to_int::convert(tmp.cur_x[i] - ub[i]) % static_cast<int>(lu_diff[i]);
					} else if (tmp.cur_x[i] < lb[i]) {
						tmp.cur_x[i] = ub[i] - double_to_int::convert(lb[i] - tmp.cur_x[i]) % static_cast<int>(lu_diff[i]);
					}
				}
			} else {
				// Pick randomly within the bounds.
				tmp.cur_x[i] = boost::uniform_int<int>(lb[i],ub[i])(m_urng);
			}
		}
		// And we push him back
		pop.push_back(tmp.cur_x);
		// We locate the worst individual.
		const population::size_type worst_idx = pop.get_worst_idx();
		// And we get rid of him :)
		pop.erase(worst_idx);
	}
}
开发者ID:YS-L,项目名称:pagmo,代码行数:82,代码来源:ihs.cpp

示例8: evolve

/**
 * Runs the Inverover algorithm for the number of generations specified in the constructor.
 *
 * @param[in,out] pop input/output pagmo::population to be evolved.
 */
void inverover::evolve(population &pop) const
{
	const problem::base_tsp* prob;
	//check if problem is of type pagmo::problem::base_tsp
	try {
		const problem::base_tsp& tsp_prob = dynamic_cast<const problem::base_tsp &>(pop.problem());
		prob = &tsp_prob;
	}
	catch (const std::bad_cast& e) {
		pagmo_throw(value_error,"Problem not of type pagmo::problem::base_tsp");
	}

	// Let's store some useful variables.
	const population::size_type NP = pop.size();
	const problem::base::size_type Nv = prob->get_n_cities();

	// Initializing the random number generators
	boost::uniform_real<double> uniform(0.0, 1.0);
	boost::variate_generator<boost::lagged_fibonacci607 &, boost::uniform_real<double> > unif_01(m_drng, uniform);
	boost::uniform_int<int> NPless1(0, NP - 2);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_NPless1(m_urng, NPless1);
	boost::uniform_int<int> Nv_(0, Nv - 1);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nv(m_urng, Nv_);
	boost::uniform_int<int> Nvless1(0, Nv - 2);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nvless1(m_urng, Nvless1);

	//create own local population
	std::vector<decision_vector> my_pop(NP, decision_vector(Nv));

	//check if some individuals in the population that is passed as a function input are feasible.
	bool feasible;
	std::vector<int> not_feasible;
	for (size_t i = 0; i < NP; i++) {
		feasible = prob->feasibility_x(pop.get_individual(i).cur_x);
		if(feasible) { //if feasible store it in my_pop
			switch(prob->get_encoding()) {
				case problem::base_tsp::FULL:
					my_pop[i] = prob->full2cities(pop.get_individual(i).cur_x);
					break;
				case problem::base_tsp::RANDOMKEYS:
					my_pop[i] = prob->randomkeys2cities(pop.get_individual(i).cur_x);
					break;
				case problem::base_tsp::CITIES:
					my_pop[i] = pop.get_individual(i).cur_x;
					break;
			}
		} else {
			not_feasible.push_back(i);
		}
	}

	//replace the not feasible individuals by feasible ones
	int i;
	switch (m_ini_type) {
		case 0:
		{
		//random initialization (produces feasible individuals)
			for (size_t ii = 0; ii < not_feasible.size(); ii++) {
				i = not_feasible[ii];
				for (size_t j = 0; j < Nv; j++) {
					my_pop[i][j] = j;
				}
			}
			int tmp;
			size_t rnd_idx;
			for (size_t j = 1; j < Nv-1; j++) {
					boost::uniform_int<int> dist_(j, Nv - 1);
					boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > dist(m_urng,dist_);
					
				for (size_t ii = 0; ii < not_feasible.size(); ii++) {
					i = not_feasible[ii];
					rnd_idx = dist();
					tmp = my_pop[i][j];
					my_pop[i][j] = my_pop[i][rnd_idx];
					my_pop[i][rnd_idx] = tmp;
				}

			}
			break;
		}
		case 1:
		{
		//initialize with nearest neighbor algorithm
		std::vector<int> starting_notes(std::max(Nv,not_feasible.size()));
			for (size_t j = 0; j < starting_notes.size(); j++) {
					starting_notes[j] = j;
			}
			//std::shuffle(starting_notes.begin(), starting_notes.end(), m_urng);
			for (size_t ii = 0; ii < not_feasible.size(); ii++) {
				i = not_feasible[ii];
				pagmo::population one_ind_pop(pop.problem(), 1);
				std::cout << starting_notes[i] << ' ';
				pagmo::algorithm::nn_tsp algo(starting_notes[i] % Nv);
				algo.evolve(one_ind_pop);
				switch( prob->get_encoding() ) {
//.........这里部分代码省略.........
开发者ID:esa,项目名称:pagmo,代码行数:101,代码来源:inverover.cpp

示例9: evolve

    /**
     * Runs the Inverover algorithm for the number of generations specified in the constructor.
     *
     * @param[in,out] pop input/output pagmo::population to be evolved.
     */
    void inverover::evolve(population &pop) const
    {

	const problem::tsp* prob;
	//check if problem is of type pagmo::problem::tsp
	try
	{
		const problem::tsp& tsp_prob = dynamic_cast<const problem::tsp &>(pop.problem());
		prob = &tsp_prob;
	}
	catch (const std::bad_cast& e)
	{
		pagmo_throw(value_error,"Problem not of type pagmo::problem::tsp");
	}
	
	// Let's store some useful variables.

	const population::size_type NP = pop.size();
	const std::vector<std::vector<double> >& weights = prob->get_weights();
	const problem::base::size_type Nv = prob->get_n_cities();

	// Get out if there is nothing to do.
	if (m_gen == 0) {
		return;
	}
	
	// Initializing the random number generators
	boost::uniform_real<double> uniform(0.0,1.0);
	boost::variate_generator<boost::lagged_fibonacci607 &, boost::uniform_real<double> > unif_01(m_drng,uniform);
	boost::uniform_int<int> NPless1(0, NP - 2);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_NPless1(m_urng,NPless1);
	boost::uniform_int<int> Nv_(0, Nv - 1);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nv(m_urng,Nv_);
	boost::uniform_int<int> Nvless1(0, Nv - 2);
	boost::variate_generator<boost::mt19937 &, boost::uniform_int<int> > unif_Nvless1(m_urng,Nvless1);


	//check if we have a symmetric problem (symmetric weight matrix)
	bool is_sym = true;
	for(size_t i = 0; i < Nv; i++)
	{
		for(size_t j = i+1; j < Nv; j++)
		{
			if(weights[i][j] != weights[j][i])
			{
				is_sym = false;
				goto end_loop;
			}
		}
	}
	end_loop:	
	
	//create own local population
	std::vector<decision_vector> my_pop(NP, decision_vector(Nv));

	//check if some individuals in the population that is passed as a function input are feasible.
	bool feasible;
	std::vector<int> not_feasible;
	for (size_t i = 0; i < NP; i++) {
		feasible = prob->feasibility_x(pop.get_individual(i).cur_x);
		if(feasible){ //if feasible store it in my_pop
			switch( prob->get_encoding() ) {
			    case problem::tsp::FULL:
			        my_pop[i] = prob->full2cities(pop.get_individual(i).cur_x);
			        break;
			    case problem::tsp::RANDOMKEYS:
			        my_pop[i] = prob->randomkeys2cities(pop.get_individual(i).cur_x);
			        break;
			    case problem::tsp::CITIES:
			        my_pop[i] = pop.get_individual(i).cur_x;
			        break;
			}
		}
		else
		{
			not_feasible.push_back(i);
		}
	}

	//replace the not feasible individuals by feasible ones	
	int i;		
	switch (m_ini_type){
		case 0:
		{
		//random initialization (produces feasible individuals)
			for (size_t ii = 0; ii < not_feasible.size(); ii++) {
				i = not_feasible[ii];
				for (size_t j = 0; j < Nv; j++) {
					my_pop[i][j] = j;
				}
			}
			int tmp;
			size_t rnd_idx;
			for (size_t j = 1; j < Nv-1; j++) {
	        		boost::uniform_int<int> dist_(j, Nv - 1);
//.........这里部分代码省略.........
开发者ID:SpaceAppsXploration,项目名称:pagmo,代码行数:101,代码来源:inverover.cpp

示例10: fair_r_policy

// Selection implementation.
std::vector<std::pair<population::size_type,std::vector<population::individual_type>::size_type> >
hv_fair_r_policy::select(const std::vector<population::individual_type> &immigrants, const population &dest) const
{
    // Fall back to fair_r_policy when facing a single-objective problem.
    if (dest.problem().get_f_dimension() == 1) {
        return fair_r_policy(m_rate, m_type).select(immigrants, dest);
    }

    std::vector<population::individual_type> filtered_immigrants;
    filtered_immigrants.reserve(immigrants.size());

    // Keeps information on the original indexing of immigrants after we filter out the duplicates
    std::vector<unsigned int> original_immigrant_indices;
    original_immigrant_indices.reserve(immigrants.size());

    // Remove the duplicates from the set of immigrants
    std::vector<population::individual_type>::iterator im_it = (const_cast<std::vector<population::individual_type> &>(immigrants)).begin();
    unsigned int im_idx = 0;
    for( ; im_it != immigrants.end() ; ++im_it) {
        decision_vector im_x((*im_it).cur_x);

        bool equal = true;
        for ( unsigned int idx = 0 ; idx < dest.size() ; ++idx ) {
            decision_vector isl_x(dest.get_individual(idx).cur_x);
            equal = true;
            for (unsigned int d_idx = 0 ; d_idx < im_x.size() ; ++d_idx) {
                if (im_x[d_idx] != isl_x[d_idx]) {
                    equal = false;
                    break;
                }
            }
            if (equal) {
                break;
            }
        }
        if (!equal) {
            filtered_immigrants.push_back(*im_it);
            original_immigrant_indices.push_back(im_idx);
        }
        ++im_idx;
    }

    // Computes the number of immigrants to be selected (accounting for the destination pop size)
    const population::size_type rate_limit = std::min<population::size_type>(get_n_individuals(dest), boost::numeric_cast<population::size_type>(filtered_immigrants.size()));

    // Defines the retvalue
    std::vector<std::pair<population::size_type, std::vector<population::individual_type>::size_type> > result;

    // Skip the remaining computation if there's nothing to do
    if (rate_limit == 0) {
        return result;
    }

    // Makes a copy of the destination population
    population pop_copy(dest);

    // Merge the immigrants to the copy of the destination population
    for (population::size_type i  = 0; i < rate_limit; ++i) {
        pop_copy.push_back(filtered_immigrants[i].cur_x);
    }

    // Population fronts stored as indices of individuals.
    std::vector< std::vector<population::size_type> > fronts_i = pop_copy.compute_pareto_fronts();

    // Population fronts stored as fitness vectors of individuals.
    std::vector< std::vector<fitness_vector> > fronts_f (fronts_i.size());

    // Nadir point is established manually later, first point is a first "safe" candidate.
    fitness_vector refpoint(pop_copy.get_individual(0).cur_f);

    // Fill fronts_f with fitness vectors and establish the nadir point
    for (unsigned int f_idx = 0 ; f_idx < fronts_i.size() ; ++f_idx) {
        fronts_f[f_idx].resize(fronts_i[f_idx].size());
        for (unsigned int p_idx = 0 ; p_idx < fronts_i[f_idx].size() ; ++p_idx) {
            fronts_f[f_idx][p_idx] = fitness_vector(pop_copy.get_individual(fronts_i[f_idx][p_idx]).cur_f);

            // Update the nadir point manually for efficiency.
            for (unsigned int d_idx = 0 ; d_idx < fronts_f[f_idx][p_idx].size() ; ++d_idx) {
                refpoint[d_idx] = std::max(refpoint[d_idx], fronts_f[f_idx][p_idx][d_idx]);
            }
        }
    }

    // Epsilon is added to nadir point
    for (unsigned int d_idx = 0 ; d_idx < refpoint.size() ; ++d_idx) {
        refpoint[d_idx] += m_nadir_eps;
    }

    // Vector for maintaining the original indices of points for augmented population as 0 and 1
    std::vector<unsigned int> g_orig_indices(pop_copy.size(), 1);

    unsigned int no_discarded_immigrants = 0;

    // Store which front we process (start with the last front) and the number of processed individuals.
    unsigned int front_idx = fronts_i.size(); // front_idx is equal to the size, since it's decremented right in the main loop
    unsigned int processed_individuals = 0;

    // Pairs of (islander index, islander exclusive hypervolume)
    // Second item is updated later
//.........这里部分代码省略.........
开发者ID:DinCahill,项目名称:pagmo,代码行数:101,代码来源:hv_fair_r_policy.cpp

示例11: evolve

void ipopt::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_f_dimension = prob.get_f_dimension();
	const population::size_type NP = pop.size();
	const problem::base::size_type Dc = D - prob_i_dimension;
	const std::string name = prob.get_name();

	//We perform some checks to determine wether the problem/population are suitable for IPOPT
	if ( prob_i_dimension != 0  ) {
		pagmo_throw(value_error,"No integer part allowed yet....");
	}

	if ( Dc == 0  ) {
		pagmo_throw(value_error,"No continuous part....");
	}

	if ( prob_f_dimension != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and IPOPT is not suitable to solve it");
	}

	// Get out if there is nothing to do.
	if (NP == 0 || m_max_iter == 0) {
		return;
	}

	//create an instance of the ipopt_problem
	::Ipopt::SmartPtr< ::Ipopt::TNLP> pagmo_nlp = new ipopt_problem(&pop);

	//create an instance of the IpoptApplication
	::Ipopt::SmartPtr< ::Ipopt::IpoptApplication> m_app = new ::Ipopt::IpoptApplication(m_screen_output,false);

	if (!m_nlp_scaling_method) {
		m_app->Options()->SetStringValue("nlp_scaling_method", "none");
	}
	m_app->Options()->SetStringValue("hessian_approximation", "limited-memory");
	m_app->Options()->SetIntegerValue("print_level", 5);

	// Termination Criteria 1: iterations
	m_app->Options()->SetIntegerValue("max_iter", m_max_iter);

	// Termination Criteria 2: tolerance
	m_app->Options()->SetNumericValue("tol", 1.);
	m_app->Options()->SetNumericValue("dual_inf_tol", m_dual_inf_tol);
	m_app->Options()->SetNumericValue("constr_viol_tol", m_constr_viol_tol);
	m_app->Options()->SetNumericValue("compl_inf_tol", m_compl_inf_tol);
	m_app->Options()->SetNumericValue("obj_scaling_factor", m_obj_scaling_factor);
	m_app->Options()->SetNumericValue("mu_init", m_mu_init);



	// Intialize the IpoptApplication and process the options
	Ipopt::ApplicationReturnStatus status;
	status = m_app->Initialize();
	if (status != Ipopt::Solve_Succeeded) {
		pagmo_throw(value_error, "Error during IPOPT initialization!");
	}

	// Ask Ipopt to solve the problem
	status = m_app->OptimizeTNLP(pagmo_nlp);
}
开发者ID:DinCahill,项目名称:pagmo,代码行数:62,代码来源:ipopt.cpp

示例12: evolve

void bee_colony::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type prob_i_dimension = prob.get_i_dimension(), D = prob.get_dimension(), Dc = D - prob_i_dimension, prob_c_dimension = prob.get_c_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type NP = (int) pop.size();

	//We perform some checks to determine wether the problem/population are suitable for ABC
	if ( Dc == 0 ) {
		pagmo_throw(value_error,"There is no continuous part in the problem decision vector for ABC to optimise");
	}

	if ( prob.get_f_dimension() != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and ABC is not suitable to solve it");
	}

	if ( prob_c_dimension != 0 ) {
		pagmo_throw(value_error,"The problem is not box constrained and ABC is not suitable to solve it");
	}

	if (NP < 2) {
		pagmo_throw(value_error,"for ABC at least 2 individuals in the population are needed");
	}

	// Get out if there is nothing to do.
	if (m_iter == 0) {
		return;
	}

	// Some vectors used during evolution are allocated here.
	fitness_vector fnew(prob.get_f_dimension());
	decision_vector dummy(D,0);			//used for initialisation purposes
	std::vector<decision_vector > X(NP,dummy);	//set of food sources
	std::vector<fitness_vector> fit(NP);		//food sources fitness

	decision_vector temp_solution(D,0);

	std::vector<int> trial(NP,0);

	std::vector<double> probability(NP);

	population::size_type neighbour = 0;

	decision_vector::size_type param2change = 0;

	std::vector<double> selectionfitness(NP), cumsum(NP), cumsumTemp(NP);
	std::vector <population::size_type> selection(NP);


	double r = 0;

	// Copy the food sources position and their fitness
	for ( population::size_type i = 0; i<NP; i++ ) {
		X[i]	=	pop.get_individual(i).cur_x;
		fit[i]	=	pop.get_individual(i).cur_f;
	}

	// Main ABC loop
	for (int j = 0; j < m_iter; ++j) {
		//1- Send employed bees
		for (population::size_type ii = 0; ii< NP; ++ii) {
			//selects a random component (only of the continuous part) of the decision vector
			param2change = boost::uniform_int<decision_vector::size_type>(0,Dc-1)(m_urng);
			//randomly chose a solution to be used to produce a mutant solution of solution ii
			//randomly selected solution must be different from ii
			do{
				neighbour = boost::uniform_int<population::size_type>(0,NP-1)(m_urng);
			}
			while(neighbour == ii);

			//copy local solution into temp_solution (the whole decision_vector, also the integer part)
			for(population::size_type i=0; i<D; ++i) {
				temp_solution[i] = X[ii][i];
			}

			//mutate temp_solution
			temp_solution[param2change] = X[ii][param2change] + boost::uniform_real<double>(-1,1)(m_drng) * (X[ii][param2change] - X[neighbour][param2change]);

			//if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
			if (temp_solution[param2change]<lb[param2change]) {
				temp_solution[param2change] = lb[param2change];
			}
			if (temp_solution[param2change]>ub[param2change]) {
				temp_solution[param2change] = ub[param2change];
			}

			//Calling void prob.objfun(fitness_vector,decision_vector) is more efficient as no memory allocation occur
			//A call to fitness_vector prob.objfun(decision_vector) allocates memory for the return value.
			prob.objfun(fnew,temp_solution);
			//If the new solution is better than the old one replace it with the mutant one and reset its trial counter
			if(prob.compare_fitness(fnew, fit[ii])) {
				X[ii][param2change] = temp_solution[param2change];
				pop.set_x(ii,X[ii]);
				prob.objfun(fit[ii], X[ii]); //update the fitness vector
				trial[ii] = 0;
			}
			else {
				trial[ii]++; //if the solution can't be improved incrase its trial counter
			}
//.........这里部分代码省略.........
开发者ID:irwenqiang,项目名称:pagmo,代码行数:101,代码来源:bee_colony.cpp

示例13: evolve

/**
 * Run the CORE algorithm
 *
 * @param[in,out] pop input/output pagmo::population to be evolved.
 */
void cstrs_core::evolve(population &pop) const
{	
	// store useful variables
	const problem::base &prob = pop.problem();
	const population::size_type pop_size = pop.size();
	const problem::base::size_type prob_dimension = prob.get_dimension();

	// get the constraints dimension
	problem::base::c_size_type prob_c_dimension = prob.get_c_dimension();

	//We perform some checks to determine wether the problem/population are suitable for CORE
	if(prob_c_dimension < 1) {
		pagmo_throw(value_error,"The problem is not constrained and CORE is not suitable to solve it");
	}
	if(prob.get_f_dimension() != 1) {
		pagmo_throw(value_error,"The problem is multiobjective and CORE is not suitable to solve it");
	}

	// Get out if there is nothing to do.
	if(pop_size == 0) {
		return;
	}

	// generates the unconstrained problem
	problem::con2uncon prob_unconstrained(prob);

	// associates the population to this problem
	population pop_uncon(prob_unconstrained);

	// fill this unconstrained population
	pop_uncon.clear();
	for(population::size_type i=0; i<pop_size; i++) {
		pop_uncon.push_back(pop.get_individual(i).cur_x);
	}

	// vector containing the infeasibles positions
	std::vector<population::size_type> pop_infeasibles;

	// Main CORE loop
	for(int k=0; k<m_gen; k++) {

		if(k%m_repair_frequency == 0) {
			pop_infeasibles.clear();

			// get the infeasible individuals
			for(population::size_type i=0; i<pop_size; i++) {
				if(!prob.feasibility_c(pop.get_individual(i).cur_c)) {
					pop_infeasibles.push_back(i);
				}
			}

			// random shuffle of infeasibles?
			population::size_type number_of_repair = (population::size_type)(m_repair_ratio * pop_infeasibles.size());

			// repair the infeasible individuals
			for(population::size_type i=0; i<number_of_repair; i++) {
				const population::size_type &current_individual_idx = pop_infeasibles.at(i);

                pop.repair(current_individual_idx, m_repair_algo);
			}

			// the population is repaired, it can be now used in the new unconstrained population
			// only the repaired individuals are put back in the population
			for(population::size_type i=0; i<number_of_repair; i++) {
				population::size_type current_individual_idx = pop_infeasibles.at(i);
				pop_uncon.set_x(current_individual_idx, pop.get_individual(current_individual_idx).cur_x);
			}
		}

		m_original_algo->evolve(pop_uncon);

		// push back the population in the main problem
		pop.clear();
		for(population::size_type i=0; i<pop_size; i++) {
			pop.push_back(pop_uncon.get_individual(i).cur_x);
		}

		// Check the exit conditions (every 40 generations, just as DE)
		if(k % 40 == 0) {
			decision_vector tmp(prob_dimension);

			double dx = 0;
			for(decision_vector::size_type i=0; i<prob_dimension; i++) {
				tmp[i] = pop.get_individual(pop.get_worst_idx()).best_x[i] - pop.get_individual(pop.get_best_idx()).best_x[i];
				dx += std::fabs(tmp[i]);
			}

			if(dx < m_xtol ) {
				if (m_screen_output) {
					std::cout << "Exit condition -- xtol < " << m_xtol << std::endl;
				}
				break;
			}

			double mah = std::fabs(pop.get_individual(pop.get_worst_idx()).best_f[0] - pop.get_individual(pop.get_best_idx()).best_f[0]);
//.........这里部分代码省略.........
开发者ID:DinCahill,项目名称:pagmo,代码行数:101,代码来源:cstrs_core.cpp

示例14: evolve

void cs::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type NP = pop.size();
	const problem::base::size_type Dc = D - prob_i_dimension;


	//We perform some checks to determine whether the problem/population are suitable for compass search
	if ( Dc == 0 ) {
		pagmo_throw(value_error,"There is no continuous part in the problem decision vector for compass search to optimise");
	}

	if ( prob_c_dimension != 0 ) {
		pagmo_throw(value_error,"The problem is not box constrained and compass search is not suitable to solve it");
	}

	if ( prob_f_dimension != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and compass search is not suitable to solve it");
	}

	// Get out if there is nothing to do.
	if (NP == 0 || m_max_eval == 0) {
		return;
	}

	//Starting point is the best individual
	const int bestidx = pop.get_best_idx();
	const decision_vector &x0 = pop.get_individual(bestidx).cur_x;
	const fitness_vector &fit0 = pop.get_individual(bestidx).cur_f;

	decision_vector x=x0,newx;
	fitness_vector f=fit0,newf=fit0;
	bool flag = false;
	int eval=0;

	double newrange=m_start_range;

	while (newrange > m_stop_range && eval <= m_max_eval) {
		flag = false;
		for (unsigned int i=0; i<Dc; i++) {
			newx=x;

			//move up
			newx[i] = x[i] + newrange * (ub[i]-lb[i]);
			//feasibility correction
			if (newx[i] > ub [i]) newx[i]=ub[i];

			prob.objfun(newf,newx); eval++;
			if (prob.compare_fitness(newf,f)) {
				f = newf;
				x = newx;
				flag=true;
				break; //accept
			}

			//move down
			newx[i] = x[i] - newrange * (ub[i]-lb[i]);
			//feasibility correction
			if (newx[i] < lb [i]) newx[i]=lb[i];

			prob.objfun(newf,newx); eval++;
			if (prob.compare_fitness(newf,f)) {  //accept
				f = newf;
				x = newx;
				flag=true;
				break;
			}
		}
		if (!flag) {
			newrange *= m_reduction_coeff;
		}
	} //end while
	std::transform(x.begin(), x.end(), pop.get_individual(bestidx).cur_x.begin(), newx.begin(),std::minus<double>()); // newx is now velocity
	pop.set_x(bestidx,x); //new evaluation is possible here......
	pop.set_v(bestidx,newx);
}
开发者ID:DinCahill,项目名称:pagmo,代码行数:79,代码来源:cs.cpp

示例15: update_penalty_coeff

/**
 * Updates the penalty coefficients with the given population.
 * @param[in] population pop.
 */
void cstrs_self_adaptive::update_penalty_coeff(const population &pop)
{
	if(*m_original_problem != pop.problem()) {
		pagmo_throw(value_error,"The problem linked to the population is not the same as the problem given in argument.");
	}

	// Let's store some useful variables.
	const population::size_type pop_size = pop.size();

	// Get out if there is nothing to do.
	if (pop_size == 0) {
		return;
	}

	m_map_fitness.clear();
	m_map_constraint.clear();
	// store f and c in maps depending on the the x hash
	for(population::size_type i=0; i<pop_size; i++) {
		const population::individual_type &current_individual = pop.get_individual(i);
		// m_map_fitness.insert(std::pair<std::size_t, fitness_vector>(m_decision_vector_hash(current_individual.cur_x),current_individual.cur_f));
		m_map_fitness[m_decision_vector_hash(current_individual.cur_x)]=current_individual.cur_f;
		m_map_constraint[m_decision_vector_hash(current_individual.cur_x)]=current_individual.cur_c;
	}

	std::vector<population::size_type> feasible_idx(0);
	std::vector<population::size_type> infeasible_idx(0);

	// store indexes of feasible and non feasible individuals
	for(population::size_type i=0; i<pop_size; i++) {
		const population::individual_type &current_individual = pop.get_individual(i);

		if(m_original_problem->feasibility_c(current_individual.cur_c)) {
			feasible_idx.push_back(i);
		} else {
			infeasible_idx.push_back(i);
		}
	}

	// if the population is only feasible, then nothing is done
	if(infeasible_idx.size() == 0) {
		update_c_scaling(pop);		
		m_apply_penalty_1 = false;
		m_scaling_factor = 0.;
		return;
	}
	m_apply_penalty_1 = false;
	m_scaling_factor = 0.;

	// updates the c_scaling, needed for solution infeasibility computation
	update_c_scaling(pop);

	// evaluate solutions infeasibility
	//compute_pop_solution_infeasibility(solution_infeasibility, pop);

	std::vector<double> solution_infeasibility(pop_size);
	std::fill(solution_infeasibility.begin(),solution_infeasibility.end(),0.);

	// evaluate solutions infeasibility
	solution_infeasibility.resize(pop_size);
	std::fill(solution_infeasibility.begin(),solution_infeasibility.end(),0.);

	for(population::size_type i=0; i<pop_size; i++) {
		const population::individual_type &current_individual = pop.get_individual(i);

		// compute the infeasibility of the constraint
		solution_infeasibility[i] = compute_solution_infeasibility(current_individual.cur_c);
	}

	// search position of x_hat_down, x_hat_up and x_hat_round
	population::size_type hat_down_idx = -1;
	population::size_type hat_up_idx = -1;
	population::size_type hat_round_idx = -1;

	// first case, the population contains at least one feasible solution
	if(feasible_idx.size() > 0) {
		// initialize hat_down_idx
		hat_down_idx = feasible_idx.at(0);

		// x_hat_down = feasible individual with lowest objective value in p
		for(population::size_type i=0; i<feasible_idx.size(); i++) {
			const population::size_type current_idx = feasible_idx.at(i);
			const population::individual_type &current_individual = pop.get_individual(current_idx);

			if(m_original_problem->compare_fitness(current_individual.cur_f, pop.get_individual(hat_down_idx).cur_f)) {
				hat_down_idx = current_idx;
			}
		}

		// hat down is now available
		fitness_vector f_hat_down = pop.get_individual(hat_down_idx).cur_f;

		// x_hat_up value depends if the population contains infeasible individual with objective
		// function better than f_hat_down
		bool pop_contains_infeasible_f_better_x_hat_down = false;
		for(population::size_type i=0; i<infeasible_idx.size(); i++) {
			const population::size_type current_idx = infeasible_idx.at(i);
//.........这里部分代码省略.........
开发者ID:DinCahill,项目名称:pagmo,代码行数:101,代码来源:cstrs_self_adaptive.cpp


注:本文中的population::problem方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。