本文整理汇总了C++中population::erase方法的典型用法代码示例。如果您正苦于以下问题:C++ population::erase方法的具体用法?C++ population::erase怎么用?C++ population::erase使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类population
的用法示例。
在下文中一共展示了population::erase方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: enumerate_program_trees
void enumerate_program_trees(generation_table& gtable, int depth, combo::type_tree& ttree, population& pop, const reduct::rule& reduction_rule) {
pop.clear();
// For each generation node with the right return-type, add it to the pop
for (std::vector<generation_node>::iterator it = gtable.begin(); it != gtable.end(); ++it) {
if (combo::equal_type_tree(it->node, combo::get_signature_output(ttree))) {
for (node_list::iterator it2 = it->glist.begin(); it2 != it->glist.end(); it2++)
pop.push_back(combo::combo_tree(*it2));
break;
}
}
// add the right number of arguments
int from_arg = combo::get_signature_inputs(ttree).size();
combo::arity_t needed_arg_count = combo::type_tree_arity(ttree);
std::cout << ttree << " " << needed_arg_count << std::endl;
for (int i = 1; i < depth; i++) {
fill_leaves(pop, from_arg);
reduce(pop, reduction_rule);
increase_tree_depth(gtable, pop, i, needed_arg_count, from_arg, reduction_rule);
}
for (population::iterator it = pop.begin(); it != pop.end();) {
bool erased = false;
for (combo::combo_tree::leaf_iterator lit = it->begin_leaf(); lit != it->end_leaf(); ++lit) {
if (get_arity(*lit) != 0 && !combo::is_argument(*lit)) {
erased = true;
break;
}
}
if (!combo::does_contain_all_arg_up_to(*it, needed_arg_count)) {
erased = true;
}
if (erased)
it = pop.erase(it);
else
++it;
}
}
示例2: evolve
void ihs::evolve(population &pop) const
{
// Let's store some useful variables.
const problem::base &prob = pop.problem();
const problem::base::size_type prob_dimension = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension();
const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
const population::size_type pop_size = pop.size();
// Get out if there is nothing to do.
if (pop_size == 0 || m_gen == 0) {
return;
}
decision_vector lu_diff(prob_dimension);
for (problem::base::size_type i = 0; i < prob_dimension; ++i) {
lu_diff[i] = ub[i] - lb[i];
}
// Int distribution to be used when picking random individuals.
boost::uniform_int<population::size_type> uni_int(0,pop_size - 1);
const double c = std::log(m_bw_min/m_bw_max) / m_gen;
// Temporary individual used during evolution.
population::individual_type tmp;
tmp.cur_x.resize(prob_dimension);
tmp.cur_f.resize(prob.get_f_dimension());
tmp.cur_c.resize(prob.get_c_dimension());
for (std::size_t g = 0; g < m_gen; ++g) {
const double ppar_cur = m_ppar_min + ((m_ppar_max - m_ppar_min) * g) / m_gen, bw_cur = m_bw_max * std::exp(c * g);
// Continuous part.
for (problem::base::size_type i = 0; i < prob_dimension - prob_i_dimension; ++i) {
if (m_drng() < m_phmcr) {
// tmp's i-th chromosome element is the one from a randomly chosen individual.
tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i];
// Do pitch adjustment with ppar_cur probability.
if (m_drng() < ppar_cur) {
// Randomly, add or subtract pitch from the current chromosome element.
if (m_drng() > .5) {
tmp.cur_x[i] += m_drng() * bw_cur * lu_diff[i];
} else {
tmp.cur_x[i] -= m_drng() * bw_cur * lu_diff[i];
}
// Handle the case in which we added or subtracted too much and ended up out
// of boundaries.
if (tmp.cur_x[i] > ub[i]) {
tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
} else if (tmp.cur_x[i] < lb[i]) {
tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
}
}
} else {
// Pick randomly within the bounds.
tmp.cur_x[i] = boost::uniform_real<double>(lb[i],ub[i])(m_drng);
}
}
//Integer Part
for (problem::base::size_type i = prob_dimension - prob_i_dimension; i < prob_dimension; ++i) {
if (m_drng() < m_phmcr) {
tmp.cur_x[i] = pop.get_individual(uni_int(m_urng)).cur_x[i];
if (m_drng() < ppar_cur) {
if (m_drng() > .5) {
tmp.cur_x[i] += double_to_int::convert(m_drng() * bw_cur * lu_diff[i]);
} else {
tmp.cur_x[i] -= double_to_int::convert(m_drng() * bw_cur * lu_diff[i]);
}
// Wrap over in case we went past the bounds.
if (tmp.cur_x[i] > ub[i]) {
tmp.cur_x[i] = lb[i] + double_to_int::convert(tmp.cur_x[i] - ub[i]) % static_cast<int>(lu_diff[i]);
} else if (tmp.cur_x[i] < lb[i]) {
tmp.cur_x[i] = ub[i] - double_to_int::convert(lb[i] - tmp.cur_x[i]) % static_cast<int>(lu_diff[i]);
}
}
} else {
// Pick randomly within the bounds.
tmp.cur_x[i] = boost::uniform_int<int>(lb[i],ub[i])(m_urng);
}
}
// And we push him back
pop.push_back(tmp.cur_x);
// We locate the worst individual.
const population::size_type worst_idx = pop.get_worst_idx();
// And we get rid of him :)
pop.erase(worst_idx);
}
}