当前位置: 首页>>代码示例>>C++>>正文


C++ point_t::weight方法代码示例

本文整理汇总了C++中point_t::weight方法的典型用法代码示例。如果您正苦于以下问题:C++ point_t::weight方法的具体用法?C++ point_t::weight怎么用?C++ point_t::weight使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在point_t的用法示例。


在下文中一共展示了point_t::weight方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: mesh


//.........这里部分代码省略.........
      point_t& du,    /* first partial derivative in v at [u,v,w] */
      point_t& dv,    /* first partial derivative in w at [u,v,w] */
      point_t& dw) const {
    pointmesh3d<point_t> mesh(points,
                              points + order_u * order_v * order_w,
                              order_u,
                              order_v,
                              order_w);

    // transform control points to homogenous space
    std::for_each(
        mesh.begin(), mesh.end(), std::mem_fn(&point_t::project_to_homogenous));

    // first decasteljau in u direction until only u-linear volume is left for u
    for (std::size_t jv = 0; jv != order_v; ++jv) {
      for (std::size_t jw = 0; jw != order_w; ++jw) {
        for (std::size_t i = 0; i != order_u - 2; ++i) {
          for (std::size_t j = 0; j != order_u - 1 - i; ++j) {
            mesh(j, jv, jw) =
                (value_type(1) - u) * mesh(j, jv, jw) + u * mesh(j + 1, jv, jw);
          }
        }
      }
    }

    // secondly decasteljau in v direction until only uv-linear volume is left
    for (std::size_t ju = 0; ju != 2; ++ju) {
      for (std::size_t jw = 0; jw != order_w; ++jw) {
        for (std::size_t i = 0; i != order_v - 2; ++i) {
          for (std::size_t j = 0; j != order_v - 1 - i; ++j) {
            mesh(ju, j, jw) =
                (value_type(1) - v) * mesh(ju, j, jw) + v * mesh(ju, j + 1, jw);
          }
        }
      }
    }

    // thirdly decasteljau until only trilinear volume is left
    for (std::size_t ju = 0; ju != 2; ++ju) {
      for (std::size_t jv = 0; jv != 2; ++jv) {
        for (std::size_t i = 0; i != order_w - 2; ++i) {
          for (std::size_t j = 0; j != order_w - 1 - i; ++j) {
            mesh(ju, jv, j) =
                (value_type(1) - w) * mesh(ju, jv, j) + w * mesh(ju, jv, j + 1);
          }
        }
      }
    }

    // evaluate for u leaving a linear patch dependending on v,w
    point_t vw00 = (value_type(1) - u) * mesh(0, 0, 0) + u * mesh(1, 0, 0);
    point_t vw10 = (value_type(1) - u) * mesh(0, 1, 0) + u * mesh(1, 1, 0);
    point_t vw01 = (value_type(1) - u) * mesh(0, 0, 1) + u * mesh(1, 0, 1);
    point_t vw11 = (value_type(1) - u) * mesh(0, 1, 1) + u * mesh(1, 1, 1);

    // evaluate for v leaving a linear patch dependending on u,w
    point_t uw00 = (value_type(1) - v) * mesh(0, 0, 0) + v * mesh(0, 1, 0);
    point_t uw10 = (value_type(1) - v) * mesh(1, 0, 0) + v * mesh(1, 1, 0);
    point_t uw01 = (value_type(1) - v) * mesh(0, 0, 1) + v * mesh(0, 1, 1);
    point_t uw11 = (value_type(1) - v) * mesh(1, 0, 1) + v * mesh(1, 1, 1);

    // evaluating v,w plane for v resulting in last linear interpolation in w ->
    // to compute first partial derivative in w
    point_t w0 = (value_type(1) - v) * vw00 + v * vw10;
    point_t w1 = (value_type(1) - v) * vw01 + v * vw11;

    // evaluating v,w plane for w resulting in last linear interpolation in v ->
    // to compute first partial derivative in v
    point_t v0 = (value_type(1) - w) * vw00 + w * vw01;
    point_t v1 = (value_type(1) - w) * vw10 + w * vw11;

    // evaluating v,w plane for w resulting in last linear interpolation in v ->
    // to compute first partial derivative in v
    point_t u0 = (value_type(1) - w) * uw00 + w * uw01;
    point_t u1 = (value_type(1) - w) * uw10 + w * uw11;

    // last interpolation and back projection to euclidian space
    point = (value_type(1) - w) * w0 + w * w1;
    point.project_to_euclidian();

    // M.S. Floater '91 :
    //
    //             w[0]{n-1}(t) * w[1]{n-1}(t)
    // P'(t) = n * --------------------------- * P[1]{n-1}(t) - P[0]{n-1}(t)
    //                     w[0]{n})^2
    //
    // 1. recalculate overwritten helping point P[0, n-1]
    // 2. project P[0, n-1] and P[1, n-1] into plane w=1
    // 3. use formula above to find out the correct length of P'(t)

    du = (order_u - value_type(1)) *
         ((u0.weight() * u1.weight()) / (point.weight() * point.weight())) *
         (u1.as_euclidian() - u0.as_euclidian());
    dv = (order_v - value_type(1)) *
         ((v0.weight() * v1.weight()) / (point.weight() * point.weight())) *
         (v1.as_euclidian() - v0.as_euclidian());
    dw = (order_w - value_type(1)) *
         ((w0.weight() * w1.weight()) / (point.weight() * point.weight())) *
         (w1.as_euclidian() - w0.as_euclidian());
  }
开发者ID:4og,项目名称:guacamole,代码行数:101,代码来源:decasteljau.hpp


注:本文中的point_t::weight方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。