当前位置: 首页>>代码示例>>C++>>正文


C++ mat3::transpose方法代码示例

本文整理汇总了C++中mat3::transpose方法的典型用法代码示例。如果您正苦于以下问题:C++ mat3::transpose方法的具体用法?C++ mat3::transpose怎么用?C++ mat3::transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mat3的用法示例。


在下文中一共展示了mat3::transpose方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1:

// I had to move it here because it depends on AtomicPair class which is defined after LaueSymmetry
vector<AtomicPair> LaueSymmetry::multiply_pairs_by_matrix(vector<AtomicPair> pairs,mat3<double> transformation_matrix) {
  vector<AtomicPair>::iterator pair;
  for(pair=pairs.begin(); pair!=pairs.end(); pair++)
  {
    for(int average=0; average<2; average++)
    {
      pair->r(average)=transformation_matrix*pair->r(average);
      pair->U(average)=trusted_mat_to_sym_mat(transformation_matrix*pair->U(average)*transformation_matrix.transpose());
    }
  }
  
  return pairs;
}
开发者ID:JacobCWard,项目名称:Yell,代码行数:14,代码来源:basic_classes.cpp

示例2:

vec3 operator*(const vec3 &v, const mat3 &a)
{
    return a.transpose() * v;
}
开发者ID:T-Jin,项目名称:glui,代码行数:4,代码来源:algebra3.cpp

示例3:

		vec2 operator * (const vec2& v, mat3& a)
		{ return a.transpose() * v; }
开发者ID:ckmarkoh,项目名称:101_2_3dfinal,代码行数:2,代码来源:algebra3.cpp

示例4: dec


//.........这里部分代码省略.........

           case 3:
           {
                double scale = max( max( max( max(abs(S[p-1]), abs(S[p-2]) ), abs(e[p-2]) ),abs(S[k,k]) ), abs(e[k]) );
                double sp = S[p-1] / scale;
                double spm1 = S[p-2] / scale;
                double epm1 = e[p-2] / scale;
                double sk = S[k] / scale;
                double ek = e[k] / scale;
                double b = ( (spm1+sp)*(spm1-sp) + epm1*epm1 ) / 2.0;
                double c = (sp*epm1) * (sp*epm1);
                double shift = 0;

                if( ( b != 0 ) || ( c != 0 ) )
                {
                    shift = sqrt( b*b+c );
                    if( b < 0 )
                        shift = -shift;
                    shift = c / ( b+shift );
                }
                double  f = (sk+sp)*(sk-sp) + shift;
                double  g = sk * ek;

                // chase zeros
                for( j=k; j<p-1; ++j )
                {
                   double  t = hypot( f, g );
                   double  cs = f / t;
                   double  sn = g / t;
                    if( j != k )e[j-1] = t;

                    f = cs*S[j] + sn*e[j];
                    e[j] = cs*e[j] - sn*S[j];
                    g = sn * S[j+1];
                    S[j+1] = cs * S[j+1];

                  
                    for( i=0; i<3; ++i )
                    {
                      t = cs*Vt[i][j]+ sn*Vt[i][j+1];
                      Vt[i][j+1] = -sn*Vt[i][j] + cs*Vt[i][j+1];
                      Vt[i][j]= t;
                     }

                    t = hypot( f, g );
                    cs = f / t;
                    sn = g / t;
                    S[j] = t;
                    f = cs*e[j] + sn*S[j+1];
                    S[j+1] = -sn*e[j] + cs*S[j+1];
                    g = sn * e[j+1];
                    e[j+1] = cs * e[j+1];

                    for( i = 0; i < 3; ++ i )
                    {
                        t = cs*U[i][j] + sn*U[i][j+1] ;
                        U[i][j+1]= -sn*U[i][j] + cs*U[i][j+1];
                        U[i][j] = t;
                    }
                }
                e[p-2] = f;
                iter = iter + 1;
            }
            break;

            // convergence
            case 4:
            {
                if( S[k] <= 0 )
                {
                    S[k] = ( S[k] < 0 ) ? -S[k] : 0;
                    for( i = 0; i <= pp; ++ i )  Vt[i][k]= -Vt[i][k];        
                }
                /*while( k < pp )
                {
                    if( S[k] >= S[k+1] )break;

                    double t = S[k];
                    S[k] = S[k+1];
                    S[k+1] = t;

                    if(k < 2 )
						for( i = 0; i < 3; ++ i )
							swap( Vt[i][k], Vt[i][k+1]);

                    if( k < 2 ) 
						for( i = 0; i < 3; ++ i )
							swap( U[i][k], U[i][k+1] );
                    k ++;
                }*/
                iter = 0;
                p --;
            }
            break;
        }
	}
	
	Vt = Vt.transpose();
	
}
开发者ID:duxing,项目名称:HandOfMidas,代码行数:101,代码来源:SVD.cpp

示例5: PolarDecompose

void PolarDecomposer::PolarDecompose(const mat3& A, mat3& Q, mat3& S, double& det, double tolerance)
{
	mat3 At = A.transpose();
	mat3 Aadj;
	mat3 Ek;
	double A_one = norm_one(At);
	double A_inf = norm_inf(At);
	double Aadj_one, Aadj_inf, E_one, gamma, g1, g2;
	
	do
	{
		Aadj = mat3(At[1].Cross(At[2]), At[2].Cross(At[0]), At[0].Cross(At[1]));
		det = At[0][0] * Aadj[0][0] + At[0][1] * Aadj[0][1] + At[0][2] * Aadj[0][2];
		if(det == 0.0)
		{
			//TODO: handle this case
			printf("Warning: zero determinant encountered.\n");
			break;
		}
		Aadj_one = norm_one(Aadj);
		Aadj_inf = norm_inf(Aadj);
		
		gamma = sqrt(sqrt((Aadj_one*Aadj_inf)/(A_one*A_inf))/fabs(det));
		g1 = gamma * 0.5;
		g2 = 0.5/(gamma*det);

		for(unsigned int i = 0; i < 3; i++)
			for(unsigned int j = 0; j < 3; j++)
			{
				Ek[i][j] = At[i][j];
				At[i][j] = g1 * At[i][j] + g2 * Aadj[i][j];
				Ek[i][j] -= At[i][j];
			}

		E_one = norm_one(Ek);

		A_one = norm_one(At);
		A_inf = norm_inf(At);
	}
	while( E_one > A_one * tolerance);

	if(fabs(det) < EPSILON)//edit by Xing
		Q = mat3::Identity();
	else
		Q = At.transpose();

	//TODO: if S is to be used. uncomment this part

	for(unsigned int i = 0; i < 3; i++)
		for(unsigned int j = 0; j < 3; j++)
		{
			S[i][j] = 0;
			for(unsigned int k = 0; k < 3; k++)
				S[i][j] += At[i][k] * A[k][j];
		}
	for(unsigned int i = 0; i < 3; i++)
		for(unsigned int j = i; j < 3; j++)
		{
			S[i][j] = S[j][i] = 0.5*(S[i][j] + S[j][i]);
		}
}
开发者ID:duxing,项目名称:HandOfMidas,代码行数:61,代码来源:polar_decompose.cpp


注:本文中的mat3::transpose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。