本文整理汇总了C++中graphchi_vertex::outedge方法的典型用法代码示例。如果您正苦于以下问题:C++ graphchi_vertex::outedge方法的具体用法?C++ graphchi_vertex::outedge怎么用?C++ graphchi_vertex::outedge使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类graphchi_vertex
的用法示例。
在下文中一共展示了graphchi_vertex::outedge方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if(gcontext.iteration == 0){
VertexDataType vertexdata = vertex.get_data();
if(!vertexdata.confirmed || !vertexdata.reconfirmed)
return ;
assert(vertex.num_inedges() * vertex.num_outedges() <= product);
for(int i=0; i<vertex.num_outedges(); i++){
bidirectional_label edgedata = vertex.outedge(i)->get_data();
if(edgedata.is_equal()){
/*
if(edgedata.smaller_one != 0)
std::cout<<edgedata.smaller_one<<" \t"<<edgedata.larger_one<<"\t root="<<root<<std::endl;
*/
if(root == edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid)){
lock.lock();
fprintf(fpout, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
lock.unlock();
continue;
}
}
/*
lock.lock();
fprintf(fpout1, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
lock.unlock();
*/
}
}
}
示例2: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType > &vertex, graphchi_context &gcontext) {
if (gcontext.iteration == 0) {
for(int i=0; i < vertex.num_outedges(); i++) {
chivector<vid_t> * evector = vertex.outedge(i)->get_vector();
evector->clear();
assert(evector->size() == 0);
evector->add(vertex.id());
assert(evector->size() == 1);
assert(evector->get(0) == vertex.id());
}
} else {
for(int i=0; i < vertex.num_inedges(); i++) {
graphchi_edge<EdgeDataType> * edge = vertex.inedge(i);
chivector<vid_t> * evector = edge->get_vector();
assert(evector->size() >= gcontext.iteration);
for(int j=0; j < evector->size(); j++) {
vid_t expected = edge->vertex_id() + j;
vid_t has = evector->get(j);
if (has != expected) {
std::cout << "Mismatch: " << has << " != " << expected << std::endl;
}
assert(has == expected);
}
}
for(int i=0; i < vertex.num_outedges(); i++) {
vertex.outedge(i)->get_vector()->add(vertex.id() + gcontext.iteration);
}
}
vertex.set_data(gcontext.iteration + 1);
}
示例3: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if (first_iteration) {
vertex.set_data(SCCinfo(vertex.id()));
}
if (vertex.get_data().confirmed) {
return;
}
/* Vertices with only in or out edges cannot be part of a SCC (Trimming) */
if (vertex.num_inedges() == 0 || vertex.num_outedges() == 0) {
if (vertex.num_edges() > 0) {
// TODO: check this logic!
vertex.set_data(SCCinfo(vertex.id()));
}
vertex.remove_alledges();
return;
}
remainingvertices = true;
VertexDataType vertexdata = vertex.get_data();
bool propagate = false;
if (gcontext.iteration == 0) {
vertexdata = vertex.id();
propagate = true;
/* Clean up in-edges. This would be nicer in the messaging abstraction... */
for(int i=0; i < vertex.num_inedges(); i++) {
bidirectional_label edgedata = vertex.inedge(i)->get_data();
edgedata.my_label(vertex.id(), vertex.inedge(i)->vertexid) = vertex.id();
vertex.inedge(i)->set_data(edgedata);
}
} else {
/* Loop over in-edges and choose minimum color */
vid_t minid = vertexdata.color;
for(int i=0; i < vertex.num_inedges(); i++) {
minid = std::min(minid, vertex.inedge(i)->get_data().neighbor_label(vertex.id(), vertex.inedge(i)->vertexid));
}
if (minid != vertexdata.color) {
vertexdata.color = minid;
propagate = true;
}
}
vertex.set_data(vertexdata);
if (propagate) {
for(int i=0; i < vertex.num_outedges(); i++) {
bidirectional_label edgedata = vertex.outedge(i)->get_data();
edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid) = vertexdata.color;
vertex.outedge(i)->set_data(edgedata);
gcontext.scheduler->add_task(vertex.outedge(i)->vertexid, true);
}
}
}
示例4: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if (vertex.get_data().confirmed) {
return;
}
VertexDataType vertexdata = vertex.get_data();
bool propagate = false;
if (gcontext.iteration == 0) {
/* "Leader" of the SCC */
if (vertexdata.color == vertex.id()) {
propagate = true;
vertex.remove_alloutedges();
}
} else {
/* Loop over in-edges and see if there is a match */
bool match = false;
for(int i=0; i < vertex.num_outedges(); i++) {
if (!vertex.outedge(i)->get_data().deleted()) {
if (vertex.outedge(i)->get_data().neighbor_label(vertex.id(), vertex.outedge(i)->vertexid) == vertexdata.color) {
match = true;
break;
}
}
}
if (match) {
propagate = true;
vertex.remove_alloutedges();
vertex.set_data(SCCinfo(vertexdata.color, true));
} else {
vertex.set_data(SCCinfo(vertex.id(), false));
}
}
if (propagate) {
for(int i=0; i < vertex.num_inedges(); i++) {
bidirectional_label edgedata = vertex.inedge(i)->get_data();
if (!edgedata.deleted()) {
edgedata.my_label(vertex.id(), vertex.inedge(i)->vertexid) = vertexdata.color;
vertex.inedge(i)->set_data(edgedata);
gcontext.scheduler->add_task(vertex.inedge(i)->vertexid, true);
}
}
}
}
示例5: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
assert(vertex.num_inedges() * vertex.num_outedges() <= product);
for(int i=0; i<vertex.num_outedges(); i++){
bidirectional_label edgedata = vertex.outedge(i)->get_data();
if(edgedata.is_equal()){
if(root == edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid)){
lock.lock();
fprintf(fpout, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
lock.unlock();
continue;
}
}
lock.lock();
fprintf(fpout1, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
lock.unlock();
}
}
示例6: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if (gcontext.iteration == 0){
//Vertexinfo vdata = vertex.get_data();
//id_th = vertex.id();
vid_t row = vertex.id() / nshards;
//vid_t new_id = row * nshards + prefix_sum[vertex.id() % nshards];
vid_t new_id = row + prefix_sum[vertex.id() % nshards];
vertex.set_data(new_id);
//source vertex in each CC
//vdata.level = 0;
//vertex.set_data(vdata);
//vid_t new_id = getNewId(vdata.ccid, vdata.level);
for(int i=0; i<vertex.num_edges(); i++){
bidirectional_label edata = vertex.edge(i)->get_data();
edata.my_label(vertex.id(), vertex.edge(i)->vertex_id()) = new_id;
vertex.edge(i)->set_data(edata);
}
lock.lock();
fprintf(vfout, "%u\t%u\n", new_id, vertex.id());
lock.unlock();
}else{
for(int i=0; i<vertex.num_outedges(); i++){
bidirectional_label edata = vertex.outedge(i)->get_data();
vid_t my_id = edata.my_label(vertex.id(), vertex.outedge(i)->vertex_id());
vid_t nb_id = edata.neighbor_label(vertex.id(), vertex.outedge(i)->vertex_id());
if(my_id == nb_id){
std::cout<<"my_id="<<vertex.id()<<"\tmy_label="<<my_id <<"\tnb_label="<<nb_id
<<"\tnb_vid="<<vertex.outedge(i)->vertex_id()<<std::endl;
assert(my_id != nb_id);
}
if(!flag_weight){
lock.lock();
fprintf(efout, "%u\t%u\n", my_id, nb_id);
lock.unlock();
}else{
lock.lock();
fprintf(efout, "%u\t%u\t%.3f\n", my_id, nb_id, edata.weight);
lock.unlock();
}
}
}
}
示例7: update
/**
* Pagerank update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &v, graphchi_context &ginfo) {
float sum=0;
if (ginfo.iteration == 0) {
/* On first iteration, initialize vertex and out-edges.
The initialization is important,
because on every run, GraphChi will modify the data in the edges on disk.
*/
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<float> * edge = v.outedge(i);
edge->set_data(1.0 / v.num_outedges());
}
v.set_data(RANDOMRESETPROB);
} else {
/* Compute the sum of neighbors' weighted pageranks by
reading from the in-edges. */
for(int i=0; i < v.num_inedges(); i++) {
float val = v.inedge(i)->get_data();
sum += val;
}
/* Compute my pagerank */
float pagerank = RANDOMRESETPROB + (1 - RANDOMRESETPROB) * sum;
/* Write my pagerank divided by the number of out-edges to
each of my out-edges. */
if (v.num_outedges() > 0) {
float pagerankcont = pagerank / v.num_outedges();
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<float> * edge = v.outedge(i);
edge->set_data(pagerankcont);
}
}
/* Keep track of the progression of the computation.
GraphChi engine writes a file filename.deltalog. */
ginfo.log_change(std::abs(pagerank - v.get_data()));
/* Set my new pagerank as the vertex value */
v.set_data(pagerank);
}
}
示例8: update_edge_data
/**
* Update the weigthed edge chivector
* We first obtain the edge weight from the first element, sum them, then update the
* second item by eacg edge's weight
*/
void update_edge_data(graphchi_vertex<VertexDataType, EdgeDataType> &v, float quota, bool first){
float sum = 0.0;
//if(first)
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<EdgeDataType> * edge = v.outedge(i);
if (edge != NULL) {
chivector<float> * evector = edge->get_vector();
//std::cout << evector->size() << std::endl;
/*if (first)
assert(evector->size() == 1);
else
assert(evector->size() == 2);
assert(evector->size() == 2);*/
std::cout << v.id() << " with data: " << evector->get(0) << std::endl;
sum += evector->get(0);
/*if (first){
evector->add(sum);
assert(evector->size() == 2);
}*/
}
}
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<EdgeDataType> * edge = v.outedge(i);
if (edge != NULL) {
chivector<float> * evector = edge->get_vector();
// assert(evector->size() == 2);
float val = quota * evector->get(0) / sum;
//evector->set(1, val);
if(first && (evector->size() == 1))
evector->add(val);
evector->set(1, val);
//std::cout << v.id() << " with data: " << evector->get(0) << std::endl;
}
}
}
示例9: update_edge_data
/**
* Update the weigthed edge chivector
* We first obtain the edge weight from the first element, sum them, then update the
* second item by eacg edge's weight
*/
void update_edge_data(graphchi_vertex<VertexDataType, EdgeDataType> &v, float quota){
float sum = 0.0;
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<EdgeDataType> * edge = v.outedge(i);
//We store the weight value to the edge->weight field and then sum them
/*if(first)
edge->set_weight(edge->get_data());*/
struct weightE eData = edge->get_data();
//sum += eData.weight;
sum ++;
//if(!first)
// std::cout << v.id() << " with data: " << edge->get_data() << " with weight " << edge->get_weight() << std::endl;
}
for(int i=0; i < v.num_outedges(); i++) {
graphchi_edge<EdgeDataType> * edge = v.outedge(i);
struct weightE eData = edge->get_data();
//eData.pagerank = quota * eData.weight / sum;
eData.pagerank = quota * 1.0 / sum;
edge->set_data(eData);
if (v.id() == 3845)
std::cout << v.id() << " -> " << edge->vertex_id() << " with data: " << eData.pagerank << " with weight " << eData.weight << std::endl;
}
}
示例10: compute_gradients
/** The actual LambdaRank implementation. */
virtual void compute_gradients(
graphchi_vertex<TypeVertex, FeatureEdge> &query, Gradient* umodel) {
std::vector<double> lambdas(query.num_outedges());
std::vector<double> s_is(query.num_outedges());
/* First, we compute all the outputs... */
for (int i = 0; i < query.num_outedges(); i++) {
s_is[i] = get_score(query.outedge(i));
// std::cout << "s[" << i << "] == " << s_is[i] << std::endl;
}
/* ...and the retrieval measure scores. */
opt.compute(query);
/* Now, we compute the errors (lambdas). */
for (int i = 0; i < query.num_outedges() - 1; i++) {
int rel_i = get_relevance(query.outedge(i));
for (int j = i + 1; j < query.num_outedges(); j++) {
int rel_j = get_relevance(query.outedge(j));
if (rel_i != rel_j) {
double S_ij = rel_i > rel_j ? 1 : -1;
double lambda_ij = dC_per_ds_i(S_ij, s_is[i], s_is[j]) *
fabs(opt.delta(query, i, j));
/* lambda_ij = -lambda_ji */
lambdas[i] += lambda_ij;
lambdas[j] -= lambda_ij;
}
}
}
/* Finally, the model update. */
for (int i = 0; i < query.num_outedges(); i++) {
// -lambdas[i], as C is a utility function in this case
umodel->update(query.outedge(i)->get_vector()->get_data(), s_is[i], lambdas[i]);
}
}
示例11: score_documents
/** Scores all documents for the query. The first step in update(). */
void score_documents(graphchi_vertex<TypeVertex, FeatureEdge> &query,
graphchi_context &ginfo) {
// XXX
// std::map<double, FeatureEdge> scores;
for (int doc = 0; doc < query.num_outedges(); doc++) {
FeatureEdge* fe = query.outedge(doc)->get_vector();
fe->header().score = model->score(fe->get_data());
// query.outedge(doc)->set_vector(fe);
// scores[fe.score] = fe;
}
// for (auto rit = scores.crbegin(); rit != scores.crend(); ++rit) {
// std::cout << "Score " << query.id()
// << ": " << rit->second.str() << std::endl;
// }
}
示例12: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
int ninedges = 0;
if (gcontext.iteration == 0) {
for(int i=0; i < vertex.num_inedges(); i++) {
vertex.inedge(i)->set_data(vertex.id());
ninedges++;
}
} else {
// Keep track of the number of edegs to ensure that
// deletion works fine.
if (vertex.get_data() != vertex.num_inedges()) {
logstream(LOG_ERROR) << "Discrepancy in edge counts: " << vertex.get_data() << " != " << vertex.num_inedges() << std::endl;
}
assert(vertex.get_data() == vertex.num_inedges());
for(int i=0; i < vertex.num_outedges(); i++) {
graphchi_edge<vid_t> * edge = vertex.outedge(i);
vid_t outedgedata = edge->get_data();
vid_t expected = edge->vertex_id() + gcontext.iteration - (edge->vertex_id() > vertex.id());
if (!is_deleted_edge_value(edge->get_data())) {
if (outedgedata != expected) {
logstream(LOG_ERROR) << outedgedata << " != " << expected << std::endl;
assert(false);
}
}
}
for(int i=0; i < vertex.num_inedges(); i++) {
vertex.inedge(i)->set_data(vertex.id() + gcontext.iteration);
if (std::rand() % 4 == 1) {
vertex.remove_inedge(i);
__sync_add_and_fetch(&ndeleted, 1);
} else {
ninedges++;
}
}
}
if (gcontext.iteration == gcontext.num_iterations - 1) {
vertex.set_data(gcontext.iteration + 1);
} else {
vertex.set_data(ninedges);
}
}
示例13: update
/**
* Pagerank update function.
*/
void update(graphchi_vertex<VType, EType> &v, graphchi_context &ginfo) {
//array[v.id()]++;
if(v.num_edges() == 0) return;
if (ginfo.iteration == 0) {
//int partid = getPId(v.id());
vid_t newid = getNewId(v.id());
v.set_data(newid);
for(int i=0; i<v.num_edges(); i++){
graphchi_edge<EType> * edge = v.edge(i);
EType edata = edge->get_data();
edata.my_label(v.id(), edge->vertex_id()) = newid;
edge->set_data(edata);
}
} else if(ginfo.iteration == 1){
/*
if(v.id() == 0){
fprintf(fp_list, "%u %u\n", num_vertices, num_edges);
}
*/
if(v.num_outedges() > 0){
vid_t mylabel = v.get_data();
for(int i=0; i<v.num_outedges(); i++){
graphchi_edge<EType> * edge = v.outedge(i);
EType edata = edge->get_data();
vid_t nblabel = edata.nb_label(v.id(), edge->vertex_id());
//vid_t nb_id = edge->vertex_id();
assert(mylabel != nblabel);
if(!flag_weight){
lock.lock();
fprintf(fp_list, "%u\t%u\n", mylabel, nblabel);
lock.unlock();
}else{
lock.lock();
fprintf(fp_list, "%u\t%u\t%.3f\n", mylabel, nblabel, edata.weight);
lock.unlock();
}
//edge->set_data(edata);
}
}/*else{
fprintf(fp_list, "\n");
}*/
}
}
示例14: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
/*
* Concurrent accessor to access the rvec value corresponding to the current vertex.
*/
tbb::concurrent_hash_map<unsigned int, nlohmann::json>::accessor ac;
rvec_map.insert(ac,vertex.id());
nlohmann::json rvec = ac->second;
int dependencies; //The number of active dependencies of the current vertex.
/*
* vertex_false to keep track of all the query vertices marked false for the vertex in the current iteration
*/
std::vector<vid_t> vertex_false;
/*
* If the vertex has a null rvec, it is being computed for the first time.
* Compare the vertex with each of the vertices in the query graph.
* If the current node matches the query node, add the dependencies of the query node to the rvec.
* If the query node does not have any dependencies, set rvec[i] as true. (This implies a direct match)
* If the query node and the current node don't match, set rvec[i] to false and add i to vertex_false.
*/
if(rvec.is_null()){
dependencies = 0; //Vertex is being computed for the first time and hence has zero dependencies.
for(unsigned int i=0; i < query_json["node"].size(); i++) {
if(check_equal(vertex_json[vertex.id()],query_json["node"][i])) {
unsigned int out_d = query_json["node"][i]["out_degree"];
if(out_d == 0){
rvec[i] = true;
}
else if(vertex.num_outedges() == 0)
{
rvec[i] = false;
vertex_false.push_back(i);
}
else
{ for(unsigned int j=0; j <query_json["edge"].size(); j++){
unsigned int source = query_json["edge"][j]["source"], target = query_json["edge"][j]["target"];
if(i == source )
rvec[i][target] = vertex.num_outedges();
}
dependencies++;
}
}
else
{
rvec[i] = false;
vertex_false.push_back(i);
}
}
/*
* If the vertex has dependencies, schedule the children of the current vertex (outedges).
*/
if(dependencies != 0){
for(int i = 0; i <vertex.num_outedges();i++)
gcontext.scheduler->add_task(vertex.outedge(i)->vertex_id());
}
/*
* Vertex data is set to the number of dependencies.
* If the vertex data is greater than 0, then it is processed whenever it is scheduled in the subsequent iterations.
* If the vertex data is 0, it is not processed in the subsequent iterations.
*/
vertex.set_data(dependencies);
}
dependencies = vertex.get_data();
/*
* If the current vertex has dependencies, it has to be processed.
* Collect the edge data of all it's outgoing edges and for each outgoing edge which is updated, update the corresponding dependency.
* Else, clear all the outedges.
*/
if(dependencies != 0 ) {
nlohmann::json updates;
for(int i = 0; i < vertex.num_outedges(); i++){
chivector<vid_t> * e_vector = vertex.outedge(i)->get_vector();
int evector_size = e_vector->size();
for( int j =0; j < evector_size; j++){
vid_t t = e_vector->get(j);
if(updates[t].is_null())
updates[t] = 1;
else {
int n = updates[t];
updates[t] = n +1;
}
}
e_vector->clear();
//.........这里部分代码省略.........
示例15: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
//For iteration 0
if (gcontext.iteration == 0) {
chivector<vid_t> * v_vector = vertex.get_vector();
v_vector->clear();
/* Initialize a json object, rvec to maintain the result vector of the current node.
* Maintain the list of outedges of the current vector.
* These outedges are the children and must match the children of the query node.
* Maintain a vector for all the nodes set to false in the current iteraion.
*/
nlohmann::json rvec;
std::vector<vid_t> vertex_outedges;
std::vector<vid_t> vertex_false;
for (int i = 0; i < vertex.num_outedges(); i++) {
vertex_outedges.push_back(vertex.outedge(i)->vertex_id());
}
/*
* Iterate through all the query nodes, and check the equality with the current node.
* If the current node matches the query node, add the dependencies of the query node to the rvec.
* If the query node does not have any dependencies, set rvec[i] as true. (This implies a direct match)
* If the query node and the current node don't match, set rvec[i] to false and add i to vertex_false.
*/
for(unsigned int i=0; i < query_json["node"].size(); i++) {
if(check_equal(vertex_json[vertex.id()],query_json["node"][i])) {
unsigned int out_d = query_json["node"][i]["out_degree"];
if(out_d == 0){
rvec[i] = true;
v_vector->add(i);
}
else if(vertex_outedges.size() == 0)
{
rvec[i] = false;
vertex_false.push_back(i);
}
else
{ for(unsigned int j=0; j <query_json["edge"].size(); j++){
unsigned int source = query_json["edge"][j]["source"], target = query_json["edge"][j]["target"];
if(i == source )
rvec[i][target] = vertex_outedges;
}
v_vector->add(i);
}
}
else
{
rvec[i] = false;
vertex_false.push_back(i);
}
}
// Access the element of rvec_map with key equal to current vertex id.
// Assign rvec as the value for current vertex id.
tbb::concurrent_hash_map<unsigned int, nlohmann::json>::accessor ac;
rvec_map.insert(ac,vertex.id());
ac->second = rvec;
ac.release();
/*
* If the size of vertex_false is not zero, changes have been made in the current iteration.
* For all the inedges, add the all the elements of vertex_false to the edge vector.
* Schedule all the inedges for the next iteration.
*
*/
if(vertex_false.size() != 0) {
for(int i = 0; i < vertex.num_inedges(); i++) {
chivector<vid_t> * e_vector = vertex.inedge(i)->get_vector();
e_vector->clear();
for(unsigned int j = 0; j< vertex_false.size(); j++){
e_vector->add(vertex_false[j]);
}
gcontext.scheduler->add_task(vertex.inedge(i)->vertex_id());
}
}
}
//For iteration 1..n
else{
/*
* Retrieve the rvec for the current node from the rvec_map.
* Intialize vertex_false to maintain the vertices set to false.
*/
tbb::concurrent_hash_map<unsigned int, nlohmann::json>::accessor ac;
rvec_map.find(ac,vertex.id());
nlohmann::json rvec = ac->second;
std::vector<vid_t> vertex_false;
chivector<vid_t> * v_vector = vertex.get_vector();
//.........这里部分代码省略.........