本文整理汇总了C++中graphchi_vertex类的典型用法代码示例。如果您正苦于以下问题:C++ graphchi_vertex类的具体用法?C++ graphchi_vertex怎么用?C++ graphchi_vertex使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了graphchi_vertex类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: update
/**
* Pagerank update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &v, graphchi_context &ginfo) {
float sum=0;
if (ginfo.iteration == 0) {
/* On first iteration, initialize vertex and out-edges.
The initialization is important,
because on every run, GraphChi will modify the data in the edges on disk.
*/
update_edge_data(v, 1.0);
v.set_data(RANDOMRESETPROB);
} else {
/* Compute the sum of neighbors' weighted pageranks by
reading from the in-edges. */
for(int i=0; i < v.num_inedges(); i++) {
//float val = v.inedge(i)->get_data();
//sum += val;
struct weightE eData = v.inedge(i)->get_data();
sum += eData.pagerank;
}
/* Compute my pagerank */
float pagerank = RANDOMRESETPROB + (1 - RANDOMRESETPROB) * sum;
/* Write my pagerank divided by the number of out-edges to
each of my out-edges. */
update_edge_data(v, pagerank);
/* Keep track of the progression of the computation.
GraphChi engine writes a file filename.deltalog. */
ginfo.log_change(std::abs(pagerank - v.get_data()));
/* Set my new pagerank as the vertex value */
v.set_data(pagerank);
}
}
示例2: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType > &vertex, graphchi_context &gcontext) {
if (gcontext.iteration == 0) {
for(int i=0; i < vertex.num_outedges(); i++) {
chivector<vid_t> * evector = vertex.outedge(i)->get_vector();
evector->clear();
assert(evector->size() == 0);
evector->add(vertex.id());
assert(evector->size() == 1);
assert(evector->get(0) == vertex.id());
}
} else {
for(int i=0; i < vertex.num_inedges(); i++) {
graphchi_edge<EdgeDataType> * edge = vertex.inedge(i);
chivector<vid_t> * evector = edge->get_vector();
assert(evector->size() >= gcontext.iteration);
for(int j=0; j < evector->size(); j++) {
vid_t expected = edge->vertex_id() + j;
vid_t has = evector->get(j);
if (has != expected) {
std::cout << "Mismatch: " << has << " != " << expected << std::endl;
}
assert(has == expected);
}
}
for(int i=0; i < vertex.num_outedges(); i++) {
vertex.outedge(i)->get_vector()->add(vertex.id() + gcontext.iteration);
}
}
vertex.set_data(gcontext.iteration + 1);
}
示例3: update
/**
* Vertex update function.
* On first iteration ,each vertex chooses a label = the vertex id.
* On subsequent iterations, each vertex chooses the minimum of the neighbor's
* label (and itself).
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
/* On subsequent iterations, find the minimum label of my neighbors */
if (!edge_count){
vid_t curmin = vertex_values[vertex.id()];
if (gcontext.iteration == 0 && vertex.num_edges() > 0){
mymutex.lock(); actual_vertices++; mymutex.unlock();
}
for(int i=0; i < vertex.num_edges(); i++) {
vid_t nblabel = neighbor_value(vertex.edge(i));
curmin = std::min(nblabel, curmin);
}
if (vertex_values[vertex.id()] > curmin) {
changes++;
set_data(vertex, curmin);
}
}
else {
vid_t curmin = vertex_values[vertex.id()];
for(int i=0; i < vertex.num_edges(); i++) {
vid_t nblabel = neighbor_value(vertex.edge(i));
curmin = std::min(nblabel, curmin);
if (vertex.edge(i)->vertex_id() > vertex.id()){
mymutex.lock();
state[curmin]++;
mymutex.unlock();
}
}
}
}
示例4: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
//go over all user nodes
if ( vertex.num_outedges() > 0){
vertex_data & user = latent_factors_inmem[vertex.id()];
//go over all ratings
for(int e=0; e < vertex.num_edges(); e++) {
float observation = vertex.edge(e)->get_data();
vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
double estScore;
rmse_vec[omp_get_thread_num()] += sgd_predict(user, movie, observation, estScore);
double err = observation - estScore;
if (std::isnan(err) || std::isinf(err))
logstream(LOG_FATAL)<<"SGD got into numerical error. Please tune step size using --sgd_gamma and sgd_lambda" << std::endl;
//NOTE: the following code is not thread safe, since potentially several
//user nodes may updates this item gradient vector concurrently. However in practice it
//did not matter in terms of accuracy on a multicore machine.
//if you like to defend the code, you can define a global variable
//mutex mymutex;
//
//and then do: mymutex.lock()
movie.pvec += sgd_gamma*(err*user.pvec - sgd_lambda*movie.pvec);
//and here add: mymutex.unlock();
user.pvec += sgd_gamma*(err*movie.pvec - sgd_lambda*user.pvec);
}
}
}
示例5: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if(gcontext.iteration == 0){
if(vertex.num_edges() == 0) return;
VertexDataType vertexdata = vertex.get_data();
if(!vertexdata.confirmed || !vertexdata.reconfirmed)
return ;
//assert(vertex.num_inedges() * vertex.num_outedges() <= product);
int ct = 0;
for(int i=0; i<vertex.num_edges(); i++){
graphchi_edge<EdgeDataType>* edge = vertex.edge(i);
bidirectional_label edgedata = edge->get_data();
if(edgedata.is_equal()){
/*
if(edgedata.smaller_one != 0)
std::cout<<edgedata.smaller_one<<" \t"<<edgedata.larger_one<<"\t root="<<root<<std::endl;
*/
if(root == edgedata.my_label(vertex.id(), edge->vertexid)){
ct++;
}
}
/*
lock.lock();
fprintf(fpout1, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
lock.unlock();
*/
}
assert(ct > 1);
}
}
示例6: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
//go over all samples (rows)
if ( vertex.num_outedges() > 0){
assert(vertex.id() < M);
vertex_data & row = latent_factors_inmem[vertex.id()];
assert(row.y == -1 || row.y == 1);
if (debug)
std::cout<<"Entered item " << vertex.id() << " y: " << row.y << std::endl;
row.sigma = beta*beta;
row.xT_mu = 0;
//go over all features
for(int e=0; e < vertex.num_outedges(); e++) {
uint feature_id = vertex.edge(e)->vertex_id();
edge_data edge = vertex.edge(e)->get_data();
assert(sigma_ij[feature_id] > 0);
assert(edge.x_ij == 1);
/* compute equation (6) */
row.sigma += edge.x_ij * sigma_ij[feature_id];
/* compute the sum xT*w as needed in equations (7) and (8) */
row.xT_mu += edge.x_ij * mu_ij[feature_id];
}
double prediction;
double ret = ctr_predict(row, row, row.y, prediction);
double predicted_target = prediction < 0 ? -1: 1;
if ((predicted_target == -1 && row.y == 1) || (predicted_target == 1 && row.y == -1))
err_vec[omp_get_thread_num()] += 1.0;
if (debug)
std::cout<<"Prediction was: " << prediction << " real value: " << row.y << std::endl;
liklihood_vec[omp_get_thread_num()] += ret;
assert(row.sigma > 0);
//go over all features
for(int e=0; e < vertex.num_outedges(); e++) {
edge_data edge = vertex.edge(e)->get_data();
uint feature_id = vertex.edge(e)->vertex_id();
assert(row.sigma > 0);
double product = row.y * row.xT_mu / sqrt(row.sigma);
mu_ij[feature_id] += (row.y * edge.x_ij * sigma_ij[feature_id] / sqrt(row.sigma)) * v(product);
//if (debug)
// std::cout<<"Added to edge: "<< vertex.edge(e)->vertex_id() << " product: " << product << " v(product): " << v(product) << " value: " <<(row.y * edge.x_ij * edge.sigma_ij * edge.sigma_ij / sqrt(row.sigma)) * v(product) << std::endl;
double factor = 1.0 - (edge.x_ij * sigma_ij[feature_id] / row.sigma)*w(product);
//if (debug)
// std::cout<<"Added to edge: "<< vertex.edge(e)->vertex_id() << " product: " << product << " w(product): " << w(product) << " factor: " << (1.0 - (edge.x_ij * edge.sigma_ij / row.sigma)*w(product)) << " sigma_ij " << edge.sigma_ij << " product: " << edge.sigma_ij * factor << std::endl;
assert(factor > 0);
sigma_ij[feature_id] *= factor;
assert(sigma_ij[feature_id] > 0);
}
}
}
示例7: set_latent_factor
// Helper
virtual void set_latent_factor(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, latentvec_t &fact) {
vertex.set_data(fact);
for(int i=0; i < vertex.num_edges(); i++) {
als_factor_and_weight factwght = vertex.edge(i)->get_data();
factwght.factor = fact;
vertex.edge(i)->set_data(factwght); // Note that neighbors override the values they have written to edges.
// This is ok, because vertices are always executed in same order.
}
}
示例8: update
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
// Loop over only in-edges and output them. This way deleted edges won't be included.
for(int i=0; i < vertex.num_inedges(); i++) {
graphchi_edge<EdgeDataType> * e = vertex.inedge(i);
((sharded_graph_output<VertexDataType, EdgeDataType> *)gengine->output(CONTRACTED_GRAPH_OUTPUT))->output_edgeval(e->vertex_id(), vertex.id(),
e->get_data());
}
}
示例9: intersection_size
/**
* Compute size of the relevant intersection of v and a pivot
*/
int intersection_size(graphchi_vertex<uint32_t, uint32_t> &v, vid_t pivot, int start_i) {
assert(is_pivot(pivot));
int count = 0;
if (pivot > v.id()) {
dense_adj &dadj = adjs[pivot - pivot_st];
int vc = v.num_edges();
/**
* If the adjacency list sizes are not too different, use
* 'merge'-type of operation to compute size intersection.
*/
if (dadj.count < 32 * (vc - start_i)) { // TODO: do real profiling to find best cutoff value
// Do merge-style of check
assert(v.edge(start_i)->vertex_id() == pivot);
int i1 = 0;
int i2 = start_i+1;
int nedges = v.num_edges();
while (i1 < dadj.count && i2 < nedges) {
vid_t dst = v.edge(i2)->vertexid;
vid_t a = dadj.adjlist[i1];
if (a == dst) {
/* Add one to edge between v and the match */
v.edge(i2)->set_data(v.edge(i2)->get_data() + 1);
count++;
i1++; i2++;
} else {
i1 += a < dst;
i2 += a > dst;
}
}
} else {
/**
* Otherwise, use linear/binary search.
*/
vid_t lastvid = 0;
for(int i=start_i+1; i < vc; i++) {
vid_t nb = v.edge(i)->vertexid;
if (nb > pivot && nb != lastvid) {
int match = findadj(dadj.adjlist, dadj.count, nb);
count += match;
if (match > 0) {
/* Add one to edge between v and the match */
v.edge(i)->set_data(v.edge(i)->get_data() + 1);
}
}
lastvid = nb;
}
}
}
return count;
}
示例10: update
/**
* Vertex update function.
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
if ( vertex.num_outedges() > 0){
vertex_data & user = latent_factors_inmem[vertex.id()];
memset(&user.weight[0], 0, sizeof(double)*D);
for(int e=0; e < vertex.num_outedges(); e++) {
vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
user.weight += movie.weight;
}
// sqrt(|N(u)|)
float usrNorm = double(1.0/sqrt(vertex.num_outedges()));
//sqrt(|N(u)| * sum_j y_j
user.weight *= usrNorm;
vec step = zeros(D);
// main algorithm, see Koren's paper, just below below equation (16)
for(int e=0; e < vertex.num_outedges(); e++) {
vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
float observation = vertex.edge(e)->get_data();
double estScore;
rmse_vec[omp_get_thread_num()] += svdpp_predict(user, movie,observation, estScore);
// e_ui = r_ui - \hat{r_ui}
float err = observation - estScore;
assert(!std::isnan(rmse_vec[omp_get_thread_num()]));
vec itmFctr = movie.pvec;
vec usrFctr = user.pvec;
//q_i = q_i + gamma2 *(e_ui*(p_u + sqrt(N(U))\sum_j y_j) - gamma7 *q_i)
for (int j=0; j< D; j++)
movie.pvec[j] += svdpp.itmFctrStep*(err*(usrFctr[j] + user.weight[j]) - svdpp.itmFctrReg*itmFctr[j]);
//p_u = p_u + gamma2 *(e_ui*q_i -gamma7 *p_u)
for (int j=0; j< D; j++)
user.pvec[j] += svdpp.usrFctrStep*(err *itmFctr[j] - svdpp.usrFctrReg*usrFctr[j]);
step += err*itmFctr;
//b_i = b_i + gamma1*(e_ui - gmma6 * b_i)
movie.bias += svdpp.itmBiasStep*(err-svdpp.itmBiasReg* movie.bias);
//b_u = b_u + gamma1*(e_ui - gamma6 * b_u)
user.bias += svdpp.usrBiasStep*(err-svdpp.usrBiasReg* user.bias);
}
step *= float(svdpp.itmFctr2Step*usrNorm);
//gamma7
double mult = svdpp.itmFctr2Step*svdpp.itmFctr2Reg;
for(int e=0; e < vertex.num_edges(); e++) {
vertex_data& movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
//y_j = y_j + gamma2*sqrt|N(u)| * q_i - gamma7 * y_j
movie.weight += step - mult * movie.weight;
}
}
}
示例11: update
/**
* Vertex update function - computes the least square step
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
vertex_data & vdata = latent_factors_inmem[vertex.id()];
bool isuser = vertex.id() < M;
mat XtX = mat::Zero(D, D);
vec Xty = vec::Zero(D);
bool compute_rmse = (vertex.num_outedges() > 0);
// Compute XtX and Xty (NOTE: unweighted)
for(int e=0; e < vertex.num_edges(); e++) {
const edge_data & edge = vertex.edge(e)->get_data();
float observation = edge.weight;
vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
Xty += nbr_latent.pvec * observation;
XtX.triangularView<Eigen::Upper>() += nbr_latent.pvec * nbr_latent.pvec.transpose();
if (compute_rmse) {
double prediction;
rmse_vec[omp_get_thread_num()] += pmf_predict(vdata, nbr_latent, observation, prediction, (void*)&edge.avgprd);
vertex.edge(e)->set_data(edge);
}
}
double regularization = lambda;
if (regnormal)
lambda *= vertex.num_edges();
for(int i=0; i < D; i++) XtX(i,i) += regularization;
// Solve the least squares problem with eigen using Cholesky decomposition
mat iAi_;
bool ret =inv((isuser? A_U : A_V) + alpha * XtX, iAi_);
assert(ret);
vec mui_ = iAi_*((isuser? (A_U*mu_U) : (A_V*mu_V)) + alpha * Xty);
vdata.pvec = mvnrndex(mui_, iAi_, D, 0);
assert(vdata.pvec.size() == D);
}
示例12: score_documents
/** Scores all documents for the query. The first step in update(). */
void score_documents(graphchi_vertex<TypeVertex, FeatureEdge> &query,
graphchi_context &ginfo) {
// XXX
// std::map<double, FeatureEdge> scores;
for (int doc = 0; doc < query.num_outedges(); doc++) {
FeatureEdge* fe = query.outedge(doc)->get_vector();
fe->header().score = model->score(fe->get_data());
// query.outedge(doc)->set_vector(fe);
// scores[fe.score] = fe;
}
// for (auto rit = scores.crbegin(); rit != scores.crend(); ++rit) {
// std::cout << "Score " << query.id()
// << ": " << rit->second.str() << std::endl;
// }
}
示例13: calc_distance
/**
* calc distance between two items.
* Let a be all the users rated item 1
* Let b be all the users rated item 2
*
* 3) Using Pearson correlation
* Dist_ab = (a - mean)*(b- mean)' / (std(a)*std(b))
*
* 4) Using cosine similarity:
* Dist_ab = (a*b) / sqrt(sum_sqr(a)) * sqrt(sum_sqr(b)))
*
* 5) Using chebychev:
* Dist_ab = max(abs(a-b))
*
* 6) Using manhatten distance:
* Dist_ab = sum(abs(a-b))
*
* 7) Using tanimoto:
* Dist_ab = 1.0 - [(a*b) / (sum_sqr(a) + sum_sqr(b) - a*b)]
*
* 8) Using log likelihood similarity
* Dist_ab = 1.0 - 1.0/(1.0 + loglikelihood)
*
* 9) Using Jaccard:
* Dist_ab = intersect(a,b) / (size(a) + size(b) - intersect(a,b))
*/
double calc_distance(graphchi_vertex<VertexDataType, EdgeDataType> &v, vid_t pivot, int distance_metric) {
//assert(is_pivot(pivot));
//assert(is_item(pivot) && is_item(v.id()));
dense_adj &pivot_edges = adjs[pivot - pivot_st];
int num_edges = v.num_edges();
dense_adj item_edges;
for(int i=0; i < num_edges; i++){
set_new(item_edges.edges, v.edge(i)->vertexid, v.edge(i)->get_data());
}
if (distance_metric == JACCARD_WEIGHT){
return calc_jaccard_weight_distance(pivot_edges.edges, item_edges.edges, get_val( pivot_edges.edges, v.id()), 0);
}
return NAN;
}
示例14: update
/**
* Vertex update function - computes the least square step
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
vertex_data & vdata = latent_factors_inmem[vertex.id()];
if (vertex.num_edges() == 0 || vdata.seed) //no edges, nothing to do here
return;
vec ret = zeros(D);
double normalization = 0;
for(int e=0; e < vertex.num_edges(); e++) {
edge_data edge = vertex.edge(e)->get_data();
vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
ret += edge.cooccurence_count * nbr_latent.pvec;
normalization += edge.cooccurence_count;
}
ret /= normalization;
vdata.pvec = alpha * vdata.pvec + (1-alpha)*ret;
}
示例15: update
/**
* Vertex update function - computes the least square step
*/
void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
vertex_data & vdata = latent_factors_inmem[vertex.id()];
mat XtX = mat::Zero(D, D);
vec Xty = vec::Zero(D);
bool compute_rmse = (vertex.num_outedges() > 0);
// Compute XtX and Xty (NOTE: unweighted)
for(int e=0; e < vertex.num_edges(); e++) {
float observation = vertex.edge(e)->get_data();
vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
Xty += nbr_latent.pvec * observation;
XtX += nbr_latent.pvec * nbr_latent.pvec.transpose();
if (compute_rmse) {
double prediction;
rmse_vec[omp_get_thread_num()] += sparse_als_predict(vdata, nbr_latent, observation, prediction);
}
}
double regularization = lambda;
if (regnormal)
lambda *= vertex.num_edges();
for(int i=0; i < D; i++) XtX(i,i) += regularization;
bool isuser = vertex.id() < (uint)M;
if (algorithm == SPARSE_BOTH_FACTORS || (algorithm == SPARSE_USR_FACTOR && isuser) ||
(algorithm == SPARSE_ITM_FACTOR && !isuser)){
double sparsity_level = 1.0;
if (isuser)
sparsity_level -= user_sparsity;
else sparsity_level -= movie_sparsity;
vdata.pvec = CoSaMP(XtX, Xty, (int)ceil(sparsity_level*(double)D), 10, 1e-4, D);
}
else vdata.pvec = XtX.selfadjointView<Eigen::Upper>().ldlt().solve(Xty);
}