当前位置: 首页>>代码示例>>C++>>正文


C++ graphchi_vertex::num_outedges方法代码示例

本文整理汇总了C++中graphchi_vertex::num_outedges方法的典型用法代码示例。如果您正苦于以下问题:C++ graphchi_vertex::num_outedges方法的具体用法?C++ graphchi_vertex::num_outedges怎么用?C++ graphchi_vertex::num_outedges使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在graphchi_vertex的用法示例。


在下文中一共展示了graphchi_vertex::num_outedges方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: update

 /**
  *  Vertex update function.
  */
 void update(graphchi_vertex<VertexDataType, EdgeDataType > &vertex, graphchi_context &gcontext) {
     if (gcontext.iteration == 0) {
         for(int i=0; i < vertex.num_outedges(); i++) {
             chivector<vid_t> * evector = vertex.outedge(i)->get_vector();
             evector->clear();
             assert(evector->size() == 0);
             
             evector->add(vertex.id());
             assert(evector->size() == 1);
             assert(evector->get(0) == vertex.id());
         }
         
     } else {
         for(int i=0; i < vertex.num_inedges(); i++) {
             graphchi_edge<EdgeDataType> * edge = vertex.inedge(i);
             chivector<vid_t> * evector = edge->get_vector();
             assert(evector->size() >= gcontext.iteration);
             for(int j=0; j < evector->size(); j++) {
                 vid_t expected = edge->vertex_id() + j;
                 vid_t has = evector->get(j);
                 if (has != expected) {
                     std::cout << "Mismatch: " << has << " != " << expected << std::endl;
                 }
                 assert(has == expected);
             }
         }
         for(int i=0; i < vertex.num_outedges(); i++) {
             vertex.outedge(i)->get_vector()->add(vertex.id() + gcontext.iteration);
         }
     }
     vertex.set_data(gcontext.iteration + 1);
 }
开发者ID:Alienfeel,项目名称:graphchi-cpp,代码行数:35,代码来源:dynamicdata_smoketest.cpp

示例2: update

	void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
		
		if(gcontext.iteration == 0){	

			VertexDataType vertexdata = vertex.get_data();
			if(!vertexdata.confirmed || !vertexdata.reconfirmed)
				return ;	
			assert(vertex.num_inedges() * vertex.num_outedges() <= product);
			for(int i=0; i<vertex.num_outedges(); i++){
				bidirectional_label edgedata = vertex.outedge(i)->get_data();
				if(edgedata.is_equal()){		
					/*
					   if(edgedata.smaller_one != 0)
					   std::cout<<edgedata.smaller_one<<" \t"<<edgedata.larger_one<<"\t root="<<root<<std::endl;
					   */
					if(root == edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid)){
						lock.lock();
						fprintf(fpout, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
						lock.unlock();
						continue;
					}
				}
				/*
				   lock.lock();
				   fprintf(fpout1, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
				   lock.unlock();
				   */
			}
		}
	}
开发者ID:warnon,项目名称:mzj_graphchi_ori,代码行数:30,代码来源:DAGdistract.cpp

示例3: update

	/**
	 *  Vertex update function.
	 */
	void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
		//go over all samples (rows)
		if ( vertex.num_outedges() > 0){

			assert(vertex.id() < M);
			vertex_data & row = latent_factors_inmem[vertex.id()]; 
                        assert(row.y == -1 || row.y == 1);

			if (debug)
				std::cout<<"Entered item " << vertex.id() << " y: " << row.y << std::endl;
			row.sigma = beta*beta;
			row.xT_mu = 0;

			//go over all features
			for(int e=0; e < vertex.num_outedges(); e++) {
                                uint feature_id = vertex.edge(e)->vertex_id();
				edge_data edge = vertex.edge(e)->get_data();                

				assert(sigma_ij[feature_id] > 0);
                                assert(edge.x_ij  == 1);

                                /* compute equation (6) */
				row.sigma += edge.x_ij * sigma_ij[feature_id];
                                /* compute the sum xT*w as needed in equations (7) and (8) */
				row.xT_mu += edge.x_ij * mu_ij[feature_id];
                                
			}
			double prediction;
			double ret = ctr_predict(row, row, row.y, prediction);
                        double predicted_target = prediction < 0 ? -1: 1;
			if ((predicted_target == -1  && row.y == 1) || (predicted_target == 1 && row.y == -1))
				err_vec[omp_get_thread_num()] += 1.0;  
                        if (debug)
                                std::cout<<"Prediction was: " << prediction << " real value: " << row.y << std::endl;
			liklihood_vec[omp_get_thread_num()] += ret;

			assert(row.sigma > 0);

			//go over all features
			for(int e=0; e < vertex.num_outedges(); e++) {
				edge_data edge = vertex.edge(e)->get_data();                
                                uint feature_id = vertex.edge(e)->vertex_id();
				assert(row.sigma > 0);
				double product = row.y * row.xT_mu / sqrt(row.sigma);
				mu_ij[feature_id] +=  (row.y * edge.x_ij *  sigma_ij[feature_id]  / sqrt(row.sigma)) * v(product);
				//if (debug)
				//    std::cout<<"Added to edge: "<< vertex.edge(e)->vertex_id() << " product: " << product << " v(product): " << v(product) << " value: " <<(row.y * edge.x_ij *  edge.sigma_ij * edge.sigma_ij / sqrt(row.sigma)) * v(product) << std::endl; 
				double factor = 1.0 - (edge.x_ij * sigma_ij[feature_id] / row.sigma)*w(product); 
				//if (debug)
				//    std::cout<<"Added to edge: "<< vertex.edge(e)->vertex_id() << " product: " << product << " w(product): " << w(product) << " factor: " << (1.0 - (edge.x_ij * edge.sigma_ij / row.sigma)*w(product)) << " sigma_ij " << edge.sigma_ij << "  product: " << edge.sigma_ij * factor << std::endl; 

				assert(factor > 0);
				sigma_ij[feature_id] *= factor;
                                assert(sigma_ij[feature_id] > 0);
			}

		}
	}
开发者ID:CVML,项目名称:graphchi-cpp,代码行数:61,代码来源:adpredictor.cpp

示例4: update

    /**
     *  Vertex update function.
     */
    void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {        
        if (first_iteration) {
            vertex.set_data(SCCinfo(vertex.id()));
        }
        
        if (vertex.get_data().confirmed) {
            return;
        }   
        
        /* Vertices with only in or out edges cannot be part of a SCC (Trimming) */
        if (vertex.num_inedges() == 0 || vertex.num_outedges() == 0) {
            if (vertex.num_edges() > 0) {
                // TODO: check this logic!
                vertex.set_data(SCCinfo(vertex.id()));
            }
            vertex.remove_alledges();
            return;
        }
        remainingvertices = true;

        VertexDataType vertexdata = vertex.get_data();
        bool propagate = false;
        if (gcontext.iteration == 0) {
            vertexdata = vertex.id();
            propagate = true;
            /* Clean up in-edges. This would be nicer in the messaging abstraction... */
            for(int i=0; i < vertex.num_inedges(); i++) {
                bidirectional_label edgedata = vertex.inedge(i)->get_data();
                edgedata.my_label(vertex.id(), vertex.inedge(i)->vertexid) = vertex.id();
                vertex.inedge(i)->set_data(edgedata);
            }
        } else {
            
            /* Loop over in-edges and choose minimum color */
            vid_t minid = vertexdata.color;
            for(int i=0; i < vertex.num_inedges(); i++) {
                minid = std::min(minid, vertex.inedge(i)->get_data().neighbor_label(vertex.id(), vertex.inedge(i)->vertexid));
            }
            
            if (minid != vertexdata.color) {
                vertexdata.color = minid;
                propagate = true;
            }            
        }
        vertex.set_data(vertexdata);
        
        if (propagate) {
            for(int i=0; i < vertex.num_outedges(); i++) {
                bidirectional_label edgedata = vertex.outedge(i)->get_data();
                edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid) = vertexdata.color;
                vertex.outedge(i)->set_data(edgedata);
                gcontext.scheduler->add_task(vertex.outedge(i)->vertexid, true);
            }
        }
    }
开发者ID:buckwad,项目名称:graphchi-cpp,代码行数:58,代码来源:stronglyconnectedcomponents.cpp

示例5: update

  /**
   *  Vertex update function.
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
      if ( vertex.num_outedges() > 0){
        vertex_data & user = latent_factors_inmem[vertex.id()]; 

        memset(&user.weight[0], 0, sizeof(double)*D);
        for(int e=0; e < vertex.num_outedges(); e++) {
          vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()]; 
          user.weight += movie.weight;

        }
        // sqrt(|N(u)|) 
        float usrNorm = double(1.0/sqrt(vertex.num_outedges()));
        //sqrt(|N(u)| * sum_j y_j
        user.weight *= usrNorm;

        vec step = zeros(D);

        // main algorithm, see Koren's paper, just below below equation (16)
        for(int e=0; e < vertex.num_outedges(); e++) {
          vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()]; 
          float observation = vertex.edge(e)->get_data();                
          double estScore;
          rmse_vec[omp_get_thread_num()] += svdpp_predict(user, movie,observation, estScore); 
          // e_ui = r_ui - \hat{r_ui}
          float err = observation - estScore;
          assert(!std::isnan(rmse_vec[omp_get_thread_num()]));
          vec itmFctr = movie.pvec;
          vec usrFctr = user.pvec;

          //q_i = q_i + gamma2     *(e_ui*(p_u      +  sqrt(N(U))\sum_j y_j) - gamma7    *q_i)
          for (int j=0; j< D; j++)
            movie.pvec[j] += svdpp.itmFctrStep*(err*(usrFctr[j] +  user.weight[j])             - svdpp.itmFctrReg*itmFctr[j]);
          //p_u = p_u + gamma2    *(e_ui*q_i   -gamma7     *p_u)
          for (int j=0; j< D; j++)
            user.pvec[j] += svdpp.usrFctrStep*(err *itmFctr[j] - svdpp.usrFctrReg*usrFctr[j]);
          step += err*itmFctr;

          //b_i = b_i + gamma1*(e_ui - gmma6 * b_i) 
          movie.bias += svdpp.itmBiasStep*(err-svdpp.itmBiasReg* movie.bias);
          //b_u = b_u + gamma1*(e_ui - gamma6 * b_u)
          user.bias += svdpp.usrBiasStep*(err-svdpp.usrBiasReg* user.bias);
        }

        step *= float(svdpp.itmFctr2Step*usrNorm);
        //gamma7 
        double mult = svdpp.itmFctr2Step*svdpp.itmFctr2Reg;
        for(int e=0; e < vertex.num_edges(); e++) {
          vertex_data&  movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
          //y_j = y_j  +   gamma2*sqrt|N(u)| * q_i - gamma7 * y_j
          movie.weight +=  step                    -  mult  * movie.weight;
        }
      }
  }
开发者ID:Alienfeel,项目名称:graphchi-cpp,代码行数:56,代码来源:svdpp.cpp

示例6: update

  /**
   *  Vertex update function - computes the least square step
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
    vertex_data & vdata = latent_factors_inmem[vertex.id()];
    mat XtX = mat::Zero(D, D); 
    vec Xty = vec::Zero(D);

    bool compute_rmse = (vertex.num_outedges() > 0);
    // Compute XtX and Xty (NOTE: unweighted)
    for(int e=0; e < vertex.num_edges(); e++) {
      float observation = vertex.edge(e)->get_data();                
      vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
      Xty += nbr_latent.pvec * observation;
      XtX += nbr_latent.pvec * nbr_latent.pvec.transpose();
      if (compute_rmse) {
        double prediction;
        rmse_vec[omp_get_thread_num()] += sparse_als_predict(vdata, nbr_latent, observation, prediction);
      }
    }

    double regularization = lambda;
    if (regnormal)
      lambda *= vertex.num_edges();
    for(int i=0; i < D; i++) XtX(i,i) += regularization;


    bool isuser = vertex.id() < (uint)M;
    if (algorithm == SPARSE_BOTH_FACTORS || (algorithm == SPARSE_USR_FACTOR && isuser) || 
        (algorithm == SPARSE_ITM_FACTOR && !isuser)){ 
      double sparsity_level = 1.0;
      if (isuser)
        sparsity_level -= user_sparsity;
      else sparsity_level -= movie_sparsity;
      vdata.pvec = CoSaMP(XtX, Xty, (int)ceil(sparsity_level*(double)D), 10, 1e-4, D); 
    }
    else vdata.pvec = XtX.selfadjointView<Eigen::Upper>().ldlt().solve(Xty);
  }
开发者ID:Alienfeel,项目名称:graphchi-cpp,代码行数:38,代码来源:sparse_als.cpp

示例7: update

  /**
   *  Vertex update function.
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
    //go over all user nodes
    if ( vertex.num_outedges() > 0){
      vertex_data & user = latent_factors_inmem[vertex.id()]; 
      //go over all ratings
      for(int e=0; e < vertex.num_edges(); e++) {
        float observation = vertex.edge(e)->get_data();                
        vertex_data & movie = latent_factors_inmem[vertex.edge(e)->vertex_id()];
        double estScore;
        rmse_vec[omp_get_thread_num()] += sgd_predict(user, movie, observation, estScore);
        double err = observation - estScore;
        if (std::isnan(err) || std::isinf(err))
          logstream(LOG_FATAL)<<"SGD got into numerical error. Please tune step size using --sgd_gamma and sgd_lambda" << std::endl;
        //NOTE: the following code is not thread safe, since potentially several
        //user nodes may updates this item gradient vector concurrently. However in practice it
        //did not matter in terms of accuracy on a multicore machine.
        //if you like to defend the code, you can define a global variable
        //mutex mymutex;
        //
        //and then do: mymutex.lock()
        movie.pvec += sgd_gamma*(err*user.pvec - sgd_lambda*movie.pvec);
        //and here add: mymutex.unlock();
        user.pvec += sgd_gamma*(err*movie.pvec - sgd_lambda*user.pvec);
      }
    }

  }
开发者ID:yangzorror,项目名称:GraduationDesign,代码行数:30,代码来源:sgd.cpp

示例8: update

  /**
   *  Vertex update function - computes the least square step
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
    vertex_data & vdata = latent_factors_inmem[vertex.id()];
    bool isuser = vertex.id() < M;
    mat XtX = mat::Zero(D, D); 
    vec Xty = vec::Zero(D);

    bool compute_rmse = (vertex.num_outedges() > 0);
    // Compute XtX and Xty (NOTE: unweighted)
    for(int e=0; e < vertex.num_edges(); e++) {
      const edge_data & edge = vertex.edge(e)->get_data();
      float observation = edge.weight;                
      vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
      Xty += nbr_latent.pvec * observation;
      XtX.triangularView<Eigen::Upper>() += nbr_latent.pvec * nbr_latent.pvec.transpose();
      if (compute_rmse) {
        double prediction;
        rmse_vec[omp_get_thread_num()] += pmf_predict(vdata, nbr_latent, observation, prediction, (void*)&edge.avgprd);
        vertex.edge(e)->set_data(edge);
      }
    }

    double regularization = lambda;
    if (regnormal)
      lambda *= vertex.num_edges();
    for(int i=0; i < D; i++) XtX(i,i) += regularization;

    // Solve the least squares problem with eigen using Cholesky decomposition
    mat iAi_;
    bool ret =inv((isuser? A_U : A_V) + alpha *  XtX, iAi_);
    assert(ret);
    vec mui_ =  iAi_*((isuser? (A_U*mu_U) : (A_V*mu_V)) + alpha * Xty); 
    vdata.pvec = mvnrndex(mui_, iAi_, D, 0); 
    assert(vdata.pvec.size() == D);
 }
开发者ID:JustgoFlyme,项目名称:graphchi,代码行数:37,代码来源:pmf.cpp

示例9: update

	void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
		
		assert(vertex.num_inedges() * vertex.num_outedges() <= product);

		for(int i=0; i<vertex.num_outedges(); i++){
			bidirectional_label edgedata = vertex.outedge(i)->get_data();
			if(edgedata.is_equal()){		
				if(root == edgedata.my_label(vertex.id(), vertex.outedge(i)->vertexid)){
					lock.lock();
						fprintf(fpout, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
					lock.unlock();
					continue;
				}
			}
			lock.lock();
			fprintf(fpout1, "%u\t%u\n", vertex.id(), vertex.outedge(i)->vertexid);
			lock.unlock();
		}
	}
开发者ID:warnon,项目名称:mzj_graphchi_ori,代码行数:19,代码来源:SCCdistract.cpp

示例10: update

    /**
      * Pagerank update function.
	  */
	void update(graphchi_vertex<VType, EType> &v, graphchi_context &ginfo) {
		//array[v.id()]++;		
		if(v.num_edges() == 0)	return;
		if (ginfo.iteration == 0) {
			//int partid = getPId(v.id());	
			vid_t newid = getNewId(v.id()); 	
			v.set_data(newid);
			for(int i=0; i<v.num_edges(); i++){
				graphchi_edge<EType> * edge = v.edge(i);
				EType edata = edge->get_data();
				edata.my_label(v.id(), edge->vertex_id()) = newid;
				edge->set_data(edata);
			}	
		} else if(ginfo.iteration == 1){
			/*
			if(v.id() == 0){
				fprintf(fp_list, "%u %u\n", num_vertices, num_edges);	
			}
			*/
			if(v.num_outedges() > 0){	
				vid_t mylabel = v.get_data();
				for(int i=0; i<v.num_outedges(); i++){
					graphchi_edge<EType> * edge = v.outedge(i);
					EType edata = edge->get_data();
					vid_t nblabel = edata.nb_label(v.id(), edge->vertex_id());
					//vid_t nb_id = edge->vertex_id();
					assert(mylabel != nblabel);
					if(!flag_weight){
						lock.lock();
						fprintf(fp_list, "%u\t%u\n", mylabel, nblabel);		
						lock.unlock();
					}else{
						lock.lock();
						fprintf(fp_list, "%u\t%u\t%.3f\n", mylabel, nblabel, edata.weight);		
						lock.unlock();
					}
					//edge->set_data(edata);	
				}
			}/*else{
				fprintf(fp_list, "\n");
			}*/
		}
	}
开发者ID:warnon,项目名称:mzj_graphchi_ori,代码行数:46,代码来源:WeightedDAGmsBFS.cpp

示例11: update

 /**
   * Pagerank update function.
   */
 void update(graphchi_vertex<VertexDataType, EdgeDataType> &v, graphchi_context &ginfo) {
     float sum=0;
     if (ginfo.iteration == 0) {
         /* On first iteration, initialize vertex and out-edges. 
            The initialization is important,
            because on every run, GraphChi will modify the data in the edges on disk. 
          */
         for(int i=0; i < v.num_outedges(); i++) {
             graphchi_edge<float> * edge = v.outedge(i);
             edge->set_data(1.0 / v.num_outedges());
         }
         v.set_data(RANDOMRESETPROB); 
     } else {
         /* Compute the sum of neighbors' weighted pageranks by
            reading from the in-edges. */
         for(int i=0; i < v.num_inedges(); i++) {
             float val = v.inedge(i)->get_data();
             sum += val;                    
         }
         
         /* Compute my pagerank */
         float pagerank = RANDOMRESETPROB + (1 - RANDOMRESETPROB) * sum;
         
         /* Write my pagerank divided by the number of out-edges to
            each of my out-edges. */
         if (v.num_outedges() > 0) {
             float pagerankcont = pagerank / v.num_outedges();
             for(int i=0; i < v.num_outedges(); i++) {
                 graphchi_edge<float> * edge = v.outedge(i);
                 edge->set_data(pagerankcont);
             }
         }
             
         /* Keep track of the progression of the computation.
            GraphChi engine writes a file filename.deltalog. */
         ginfo.log_change(std::abs(pagerank - v.get_data()));
         
         /* Set my new pagerank as the vertex value */
         v.set_data(pagerank); 
     }
 }
开发者ID:JustgoFlyme,项目名称:graphchi,代码行数:44,代码来源:pagerank.cpp

示例12: update

  /**
   *  Vertex update function - computes the least square step
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
    vertex_data & vdata = latent_factors_inmem[vertex.id()];
    if (debug)
      logstream(LOG_DEBUG)<<"Entering node: " << vertex.id() << " seed? " << vdata.seed << " in vector: " << vdata.pvec << std::endl;
    if (vdata.seed || vertex.num_outedges() == 0) //if this is a seed node, don't do anything
      return;
    vec ret = zeros(D);

    for(int e=0; e < vertex.num_outedges(); e++) {
      float weight = vertex.edge(e)->get_data();                
      assert(weight != 0);
      vertex_data & nbr_latent = latent_factors_inmem[vertex.edge(e)->vertex_id()];
      ret += weight * nbr_latent.pvec;
    }

    //normalize probabilities
    assert(sum(ret) != 0);
    ret = ret / sum(ret);
    vdata.pvec = alpha * vdata.pvec + (1-alpha)*ret;
    vdata.pvec/= sum(vdata.pvec);
  }
开发者ID:Alienfeel,项目名称:graphchi-cpp,代码行数:24,代码来源:label_propagation.cpp

示例13: update

  /**
   *  compute validaton AP for a single user
   */
  void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {

    if (user_nodes && vertex.id() >= M)
      return;
    else if (!user_nodes && vertex.id() < M)
      return;
    vertex_data & vdata = latent_factors_inmem[vertex.id()];
    vec ratings = zeros(vertex.num_outedges());
    vec real_vals = zeros(vertex.num_outedges());
    if (ratings.size() > 0){
      users_vec[omp_get_thread_num()]++;
      int j=0;
      int real_click_count = 0;
      for(int e=0; e < vertex.num_outedges(); e++) {
        const EdgeDataType & observation = vertex.edge(e)->get_data();
        vertex_data & pdata = latent_factors_inmem[vertex.edge(e)->vertex_id()];
        double prediction;
        (*pprediction_func)(vdata, pdata, observation, prediction, NULL);
        ratings[j] = prediction;
        real_vals[j] = observation;
        if (observation > 0)
          real_click_count++;
        j++;
      }
      int count = 0;
      double ap = 0;
      ivec pos = sort_index(ratings);
      for (int j=0; j< std::min(ap_number, (int)ratings.size()); j++){
        if (real_vals[pos[ratings.size() - j - 1]] > 0)
          ap += (++count * 1.0/(j+1));
      }
      if (real_click_count > 0 )
        ap /= real_click_count;
      else ap = 0;
      sum_ap_vec[omp_get_thread_num()] += ap;
    }
  }
开发者ID:banglh,项目名称:my_CF,代码行数:40,代码来源:rmse_engine.hpp

示例14: update

 /**
  *  Vertex update function.
  */
 void update(graphchi_vertex<VertexDataType, EdgeDataType> &vertex, graphchi_context &gcontext) {
     
     if (vertex.get_data().confirmed) {
         return;
     }
     
     VertexDataType vertexdata = vertex.get_data();
     bool propagate = false;
     if (gcontext.iteration == 0) {
         /* "Leader" of the SCC */
         if (vertexdata.color == vertex.id()) {
             propagate = true;
             vertex.remove_alloutedges();
         }
         
     } else {
         
         /* Loop over in-edges and see if there is a match */
         bool match = false;
         for(int i=0; i < vertex.num_outedges(); i++) {
             if (!vertex.outedge(i)->get_data().deleted()) {
                 if (vertex.outedge(i)->get_data().neighbor_label(vertex.id(), vertex.outedge(i)->vertexid) == vertexdata.color) {
                     match = true;
                     
                     break;
                 }
             }
         }
         if (match) {
             propagate = true;
             vertex.remove_alloutedges();
             vertex.set_data(SCCinfo(vertexdata.color, true));
         } else {
             vertex.set_data(SCCinfo(vertex.id(), false));
         }
     }
     
     
     if (propagate) {
         for(int i=0; i < vertex.num_inedges(); i++) {
             bidirectional_label edgedata = vertex.inedge(i)->get_data();
             if (!edgedata.deleted()) {
                 edgedata.my_label(vertex.id(), vertex.inedge(i)->vertexid) = vertexdata.color;
                 vertex.inedge(i)->set_data(edgedata);
                 gcontext.scheduler->add_task(vertex.inedge(i)->vertexid, true);
             }
         }
     }
 }
开发者ID:warnon,项目名称:block-graphchi,代码行数:52,代码来源:stronglyconnectedcomponents.cpp

示例15: update_edge_data

    /**
      * Update the weigthed edge chivector
      * We first obtain the edge weight from the first element, sum them, then update the 
      * second item by eacg edge's weight
      */
    void update_edge_data(graphchi_vertex<VertexDataType, EdgeDataType> &v, float quota, bool first){
	float sum = 0.0;
	//if(first)
            for(int i=0; i < v.num_outedges(); i++) {
                graphchi_edge<EdgeDataType> * edge = v.outedge(i);
                if (edge != NULL) {
                    chivector<float> * evector = edge->get_vector();
		    //std::cout << evector->size() << std::endl;
		    /*if (first)
                        assert(evector->size() == 1);
		    else
                        assert(evector->size() == 2);
                    assert(evector->size() == 2);*/
    	            std::cout <<  v.id() << " with data: " << evector->get(0) << std::endl;
	            sum += evector->get(0);
		    /*if (first){
                        evector->add(sum);
                	assert(evector->size() == 2);
		    }*/
	        }
            }
	
        for(int i=0; i < v.num_outedges(); i++) {
            graphchi_edge<EdgeDataType> * edge = v.outedge(i);
            if (edge != NULL) {
                chivector<float> * evector = edge->get_vector();
//                assert(evector->size() == 2);
		float val = quota * evector->get(0) / sum;
		//evector->set(1, val);
		if(first && (evector->size() == 1))
                        evector->add(val);	
		evector->set(1, val);
    		//std::cout <<  v.id() << " with data: " << evector->get(0) << std::endl;
	    }
         }
    }
开发者ID:carriercomm,项目名称:TrueTop,代码行数:41,代码来源:pagerank-wrong-dynamic.cpp


注:本文中的graphchi_vertex::num_outedges方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。