本文整理汇总了C++中board类的典型用法代码示例。如果您正苦于以下问题:C++ board类的具体用法?C++ board怎么用?C++ board使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了board类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: eval_and_sort
void eval_and_sort(
const evaluator& e, board& b, piece_colour pc,
move* movelist, int num_moves)
{
for (int i = 0; i < num_moves; i++)
{
move& m = movelist[i];
// TODO have the idea of score at a particular depth
b.do_move(m);
m.score = e.calc_score(b, pc);
b.undo_move();
}
std::sort(movelist, movelist + num_moves, move_sorter());
#ifdef SHOW_SORTED_MOVES_LIST
std::cout << "Sorted moves list: ";
for (int i = 0; i < num_moves; i++)
{
move& m = movelist[i];
std::cout << m << " (" << m.score << ") ";
}
std::cout << "\n";
#endif
}
示例2: boardValue
double strategySimple::boardValue( const board& brd, const hash_map<string,int>* context ) const
{
// start with pips^2
double val=brd.pipsq();
// dislike singletons, giant towers; like blocked-off spots next each other
int check;
int run=0, maxRun=0;
for( int i=0; i<24; i++ )
{
check = brd.checker(i);
if( check == 1 )
val -= singletonWeight;
if( check > 5 )
val -= towerWeight * ( check - 5 );
if( check > 1 )
{
run ++;
if( run > maxRun ) maxRun = run;
}
else
run = 0;
}
val += runWeight * ( maxRun - 1 );
return val;
}
示例3: displayCall
void displayCall(){
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
drawBoard(11);
int x, y; char owner;
while(true){
cout<<"Enter (row) [space] (column)"<<endl;
cout<<"Ex: 1 11 or 11 5"<<endl;
cin>>x>>y;
if(x>0 && x<=11 && y>0 && y<=11 && hexBoard.getVector()[x-1][y-1].owner == '-'){
owner = 'R';
break;
}
}
x--; y--; //used for translating input of 1-11 to data of 0-10
hexBoard.placePiece(x, y, owner);
posNode temp = posNode(x,y,owner);
board.push_back(temp);
for(auto element: board)
colorHex(element.coordX, element.coordY, element.owner);
drawBoard(11);
drawRects();
glutSwapBuffers();
char winner = ' ';
determineWinner(connectivityMatrix, hexBoard, boardWidth, winner, false);
if(winner == 'R') exit(0);
}
示例4: checks
double strategytdexp4::getOutputBackgammonLossValue( const vector<double>& middles, const board& brd ) const
{
// special case - if the player 0 has taken any pieces in, the gammon loss prob is zero
if( brd.bornIn0Raw() > 0 ) return 0;
// also if there are no player 0 pieces in player 1's box, the backgammon win prob is zero
vector<int> checks( brd.checkers0Raw() );
bool foundOne = brd.hit0Raw() > 0;
if( !foundOne )
for( int i=18; i<24; i++ )
if( checks.at(i) > 0 )
{
foundOne = true;
break;
}
if( !foundOne ) return 0;
// otherwise calculate the network value
double val=0;
for( int i=0; i<nMiddle; i++ )
val += outputBackgammonLossWeights.at(i) * middles.at(i);
val += outputBackgammonLossWeights.at(nMiddle); // bias node
return 1. / ( 1 + exp( -val ) );
}
示例5: getInputValues
double strategytdexp4::boardValue( const board& brd, const hash_map<string,int>* context ) const
{
// get the inputs from the board, assuming the player holds the dice
vector<double> inputs = getInputValues( brd, brd.perspective() );
// calculate the middle layer node values
vector<double> middles = getMiddleValues( inputs );
// calculate the output node values from the middles
double probWin = getOutputProbValue( middles );
double probCondGammonWin = getOutputGammonWinValue( middles, brd );
double probCondGammonLoss = getOutputGammonLossValue( middles, brd );
double probCondBgWin = getOutputBackgammonWinValue( middles, brd );
double probCondBgLoss = getOutputBackgammonLossValue( middles, brd );
// calculate the expected number of points the player will win. probWin
// corresponds to the probability of a win (any win); probCondGammon
// corresponds to the probability of a gammon conditional on a win;
// probCondGammonLoss corresponds to the probability of a gammon loss
// conditional on a loss. Ditto for backgammon win/loss conditional probs.
double ppg = probWin * ( 1 * ( 1 - probCondGammonWin ) + 2 * probCondGammonWin * ( 1 - probCondBgWin ) + 3 * probCondGammonWin * probCondBgWin )
- ( 1 - probWin ) * ( 1 * ( 1 - probCondGammonLoss ) + 2 * probCondGammonLoss * ( 1 - probCondBgLoss ) + 3 * probCondGammonLoss * probCondBgLoss );
// the ppg is always from player 0's perspective. But we want it from the board
// perspective.
if( brd.perspective() == 0 )
return ppg;
else
return -ppg;
}
示例6: getMovePoints
// aplica un backtracking amarat pe fiecare dintre cele 4 directii cardinale
// (la rascruce de vanturi) si calculeaza in momentul in care ajunge la adancimea
// maxima (fundul putului) calculeaza un punctaj pentru fiecare mutare
// din pacate drumul inapoi nu are gropi k ar mai fi taiat din punctaj
int getMovePoints(board previousBoard, int currentDepth, vector<int> mutari) {
position posXYEnemy = previousBoard.getPlayerPosition(2);
position posXYMyPlayer = previousBoard.getPlayerPosition(1);
if (currentDepth >= maxDepth_ ||
previousBoard.getPossibleMoves(posXYEnemy) == 0 ||
previousBoard.getPossibleMoves(posXYMyPlayer) == 0
) {
return getPoints(previousBoard, mutari, 1 /*Player1*/);
} else {
int maxProfit = 0;
for (int i = 0; i < 4; i++) {
int eachProfit = 0;
board tempBoard = previousBoard.copyBoard();
position myPosition = tempBoard.getPlayerPosition(1);
if (tempBoard.isEmpty(i, myPosition)) {
tempBoard.doMove(i,1);
mutari.push_back(i);
eachProfit = getMovePoints(tempBoard, currentDepth + 1, mutari);
if (eachProfit > maxProfit) {
maxProfit = eachProfit;
}
mutari.pop_back();
}
}
return maxProfit;
}
}
示例7: probs
bool doublestratmatch::takeDouble( strategyprob& strat, const board& b, int cube )
{
// need probabilities when the opponent holds the dice; that's what the strategy's
// boardProbabilities returns so just use that.
gameProbabilities probs( boardProbabilities(strat,b,false) );
// calculate the equity at the doubled cube level assuming the player holds the dice
interpMEdata deadME( equityInterpFn( probs, b.perspective(), 2*cube, b.perspective(), true ) );
interpMEdata liveME( equityInterpFn( probs, b.perspective(), 2*cube, b.perspective(), false ) );
double equityDouble = cubeLifeIndex*liveME(probs.probWin) + (1-cubeLifeIndex)*deadME(probs.probWin);
// calculate the equity we'd give up if we passed. Respect the Crawford rule.
int n = b.perspective() == 0 ? currMatch->getTarget() - currMatch->playerScore() : currMatch->getTarget() - currMatch->opponentScore();
int m = b.perspective() == 0 ? currMatch->getTarget() - currMatch->opponentScore() : currMatch->getTarget() - currMatch->playerScore();
double singleLossME;
if( n == 1 )
singleLossME = MET.matchEquityPostCrawford(m-cube);
else if( m == 1 )
singleLossME = -1;
else
singleLossME = MET.matchEquity(n, m-cube);
return equityDouble > singleLossME;
}
示例8: min_node
board min_node(board ¤t, vector <string> &traverse_log, const int depth, const bool prune, const node from, const bool save_log) const {
assert(depth >= 0 && depth <= cutoff);
//cout << get_node_name(current) << endl;
int v = MAX_INT;
/*if (depth == cutoff) {
v = current.eval(who);
}*/
board best = current;
if ((current.who != current.whom && depth == cutoff) || !current.has_legal_move() || (!current.is_root && abs(current.eval(who)) == WINNING)) {
best.val = current.eval(who);
if (save_log) {
traverse_log.push_back(log_string(current, depth, best.val, prune));
}
return best;
}
if (save_log) {
traverse_log.push_back(log_string(current, depth, v, prune));
}
for (auto e: current.candidate) {
board next = current.move(e);
next.history.push_back(e);
int delta_depth = current.whom != current.who;
if (depth == cutoff && delta_depth) {
best.val = current.eval(who);
return best;
}
if (next.whom == next.who) { //Still player's turn
next = min_node(next, traverse_log, depth + delta_depth, prune, MIN_NODE, save_log);
} else {
next = max_node(next, traverse_log, depth + delta_depth, prune, MIN_NODE, save_log);
}
if (next.val < v) {
v = next.val;
best = next;
}
if (prune) {
if (best.val <= current.alpha) {
if (save_log) {
traverse_log.push_back(log_string(current, depth, v, prune));
}
return best;
}
current.beta = min(current.beta, best.val);
}
if (save_log) {
traverse_log.push_back(log_string(current, depth, v, prune));
}
//cout << get_node_name(current) << endl;
}
return best;
}
示例9: doTurn
board_turn agent_neural_statistical::doTurn ( board b, int player ) {
/*
This will be called when the agents needs to make a move.
You are provided with
-the board b: This is the current board state.
-the int player: This is the player number of this agent on the board b.
All your tiles on the board will have the contents of the int player.
for all your tiles t, t.getContents ( ) = player.
You cannot add on more arguments for this function.
*/
cout << "Player #" << player << "s turn, neural statistical agent.\n";
b.print ( );
auto originalBoard = b;
int nRotations = b.rotateForPerspective ( player );
board_turn t;
vector < board_turn > possibleTurns = b.findAllPossibleTurns ( player );
board_turn bestTurn = possibleTurns [ 0 ];
double bestScore = 0;
for ( size_t i = 0; i < possibleTurns.size ( ); ++ i ) {
board b2 = b;
b2.makeTurn ( possibleTurns [ i ] );
vector < double > indata ( 121, 0 );
for ( size_t i = 0; i < indata.size ( ); ++ i ) indata [ i ] = lib::intToIndata ( b.intToTile ( i ) -> getContents ( ), player );
double score = nn.run ( indata ) [ 0 ];
if ( bestScore < score ) {
bestTurn = possibleTurns [ i ];
bestScore = score;
}
}
bestTurn.rotate ( 6 - nRotations );
return bestTurn;
}
示例10: max
result player::max(pos& p , board& b)
{
if(b.checkGameState()==LOSS)
{
return LOSS;
}
/* This function will play KNOT or AI's moves */
if(b.getLevel()==9)
{
return DRAW;
}
else
{
/* if found winning move in next step . Prune everything else
It stops the process of finding the suitable move as soon
as the winning move is found.
*/
bool flag=false;
/* Saves the current best coordinate/Box in the current state*/
int *coord=new int[2];
result finalResult = LOSS;
for ( int i=0 ; i<3 ; i++)
{
for ( int j=0 ; j<3 ; j++)
{
if(b.mMatrix[i][j]==NONE)
{
board tempBoard=b;
tempBoard.mMatrix[i][j]=KNOT;
result res=mini(p ,tempBoard);
if(res>=finalResult)
{
coord[0]=i;
coord[1]=j;
finalResult=res;
if(res==WIN)
{
flag=true;
break;
}
}
}
}
if(flag==true)
break;
}
p.r=coord[0];
p.c=coord[1];
return finalResult;
}
}
示例11: generate_move
void gen_move::generate_move(const board& b, int side, location_list& valid_moves)
{
location_list::location m ;
for(m.y = 0 ; m.y < 8 ; m.y++) {
for(m.x = 0 ; m.x < 8 ; m.x++) {
if(b.get_at(m) == board::EMPTY && b.check_move_at(m, side)) {
valid_moves.insert(m) ;
}
}
}
}
示例12: state_value
double GeometricRandomPlayout::state_value(board& b){
if (b.black_has_won()){
return 1.0;
}
if (b.white_has_won()){
return 0.0;
}
if (b.is_ended()){
return 0.5;
}
double hval = h.evaluate(b);
return (1/(1+exp(-hval)));
}
示例13: assert
evaluate::score evaluate::eval(const board& b, board::piece side, int turn)
{
score s ;
int turn_num ;
assert(side == board::BLACK || side == board::WHITE) ;
turn_num = b.get_black_count() + b.get_white_count() ;
this->side = side ;
if(turn_num >= 48) return end_eval(b, turn) ;
s = recur_eval(b, turn, level, turn_num, -9999999) ;
return s ;
}
示例14: getPoints
// merge in sens invers al parcurgerii miscarilor si calculeaza
// un punctaj pentru fiecare mutare
// citez : "Drumurile noastre poate... Se vor intalni vreodata"
int getPoints(board someBoard, vector<int> mutari, int playerNo) {
int punctajFinal = 0;
int posX = someBoard.getPlayerPositionX(playerNo);
int posY = someBoard.getPlayerPositionY(playerNo);
position posXY = someBoard.getPlayerPosition(playerNo);
int mutariPosibile = someBoard.getPossibleMoves(posXY);
int punctajTemp = awardPoints(mutariPosibile);
punctajFinal += punctajTemp;
for (int i = mutari.size() - 1; i >= 0; i--) {
switch (mutari[i]) {
case (UP) : posX ++;
mutariPosibile = someBoard.getPossibleMoves(posX,posY);
punctajTemp = awardPoints(mutariPosibile);
punctajFinal += punctajTemp;
break;
case (DOWN) : posX --;
mutariPosibile = someBoard.getPossibleMoves(posX,posY);
punctajTemp = awardPoints(mutariPosibile);
punctajFinal += punctajTemp;
break;
case (LEFT) : posY ++;
mutariPosibile = someBoard.getPossibleMoves(posX,posY);
punctajTemp = awardPoints(mutariPosibile);
punctajFinal += punctajTemp;
break;
case (RIGHT) : posY --;
mutariPosibile = someBoard.getPossibleMoves(posX,posY);
punctajTemp = awardPoints(mutariPosibile);
punctajFinal += punctajTemp;
break;
}
}
return punctajFinal;
}
示例15: max_value
int max_value(board b, int d, int player, int pos)
{
int alpha = -9999;
bool turn = b.board_update(player, pos);
if (!turn && (d == depth))
{
if (b.terminal_check()) b.end_game(player);
print_minimax(player, pos, d, evaluation(b));
}
if (turn)
{
int beta = 9999;
print_minimax(player, pos, d, beta);
if (b.terminal_check())
{
b.end_game(player);
beta = evaluation(b);
print_minimax(player, pos, d, beta);
return beta;
}
for (int i = 2; i <= b.b_size / 2; i++)
{
if (b.board_value(player, i) == 0) {}
else
{
beta = min(beta, max_value(b, d, player, i));
print_minimax(player, pos, d, beta);
}
}
return beta;
}
else if (d != depth)
{
print_minimax(player, pos, d, alpha);
if (b.terminal_check())
{
b.end_game(player);
alpha = evaluation(b);
print_minimax(player, pos, d, alpha);
return alpha;
}
vector<int> a(1);
for (int i = 2; i <= b.b_size / 2; i++)
{
if (b.board_value((player + 1) % 2, i) == 0) {}
else
{
alpha = max(alpha, min_value(b, d + 1, (player + 1) % 2, i, false, 0, a));
print_minimax(player, pos, d, alpha);
}
}
}
else alpha = evaluation(b);
return alpha;
}