本文整理汇总了C++中TrustDomain类的典型用法代码示例。如果您正苦于以下问题:C++ TrustDomain类的具体用法?C++ TrustDomain怎么用?C++ TrustDomain使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了TrustDomain类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: BuildCertChain
Result
BuildCertChain(TrustDomain& trustDomain, Input certDER,
Time time, EndEntityOrCA endEntityOrCA,
KeyUsage requiredKeyUsageIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
/*optional*/ const Input* stapledOCSPResponse)
{
// XXX: Support the legacy use of the subject CN field for indicating the
// domain name the certificate is valid for.
BackCert cert(certDER, endEntityOrCA, nullptr);
Result rv = cert.Init();
if (rv != Success) {
return rv;
}
// See documentation for CheckPublicKey() in pkixtypes.h for why the public
// key also needs to be checked here when trustDomain.VerifySignedData()
// should already be doing it.
rv = trustDomain.CheckPublicKey(cert.GetSubjectPublicKeyInfo());
if (rv != Success) {
return rv;
}
return BuildForward(trustDomain, cert, time, requiredKeyUsageIfPresent,
requiredEKUIfPresent, requiredPolicy, stapledOCSPResponse,
0/*subCACount*/);
}
示例2: MapSECStatus
Result
BackCert::VerifyOwnSignatureWithKey(TrustDomain& trustDomain,
const SECItem& subjectPublicKeyInfo) const
{
return MapSECStatus(trustDomain.VerifySignedData(&nssCert->signatureWrap,
subjectPublicKeyInfo));
}
示例3: KeyHash
// TODO(bug 966856): support SHA-2 hashes
Result
KeyHash(TrustDomain& trustDomain, const Input subjectPublicKeyInfo,
/*out*/ uint8_t* hashBuf, size_t hashBufSize)
{
if (!hashBuf || hashBufSize != TrustDomain::DIGEST_LENGTH) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
// RFC 5280 Section 4.1
//
// SubjectPublicKeyInfo ::= SEQUENCE {
// algorithm AlgorithmIdentifier,
// subjectPublicKey BIT STRING }
Reader spki;
Result rv;
{
// The scope of input is limited to reduce the possibility of confusing it
// with spki in places we need to be using spki below.
Reader input(subjectPublicKeyInfo);
rv = der::ExpectTagAndGetValue(input, der::SEQUENCE, spki);
if (rv != Success) {
return rv;
}
rv = der::End(input);
if (rv != Success) {
return rv;
}
}
// Skip AlgorithmIdentifier
rv = der::ExpectTagAndSkipValue(spki, der::SEQUENCE);
if (rv != Success) {
return rv;
}
Input subjectPublicKey;
rv = der::BitStringWithNoUnusedBits(spki, subjectPublicKey);
if (rv != Success) {
return rv;
}
rv = der::End(spki);
if (rv != Success) {
return rv;
}
return trustDomain.DigestBuf(subjectPublicKey, hashBuf, hashBufSize);
}
示例4: KeyHash
// TODO(bug 966856): support SHA-2 hashes
Result
KeyHash(TrustDomain& trustDomain, const Input subjectPublicKeyInfo,
/*out*/ uint8_t* hashBuf, size_t hashBufSize)
{
if (!hashBuf || hashBufSize != TrustDomain::DIGEST_LENGTH) {
return Result::FATAL_ERROR_LIBRARY_FAILURE;
}
// RFC 5280 Section 4.1
//
// SubjectPublicKeyInfo ::= SEQUENCE {
// algorithm AlgorithmIdentifier,
// subjectPublicKey BIT STRING }
Reader spki;
Result rv = der::ExpectTagAndGetValueAtEnd(subjectPublicKeyInfo,
der::SEQUENCE, spki);
if (rv != Success) {
return rv;
}
// Skip AlgorithmIdentifier
rv = der::ExpectTagAndSkipValue(spki, der::SEQUENCE);
if (rv != Success) {
return rv;
}
Input subjectPublicKey;
rv = der::BitStringWithNoUnusedBits(spki, subjectPublicKey);
if (rv != Success) {
return rv;
}
rv = der::End(spki);
if (rv != Success) {
return rv;
}
return trustDomain.DigestBuf(subjectPublicKey, hashBuf, hashBufSize);
}
示例5: BuildForward
// Recursively build the path from the given subject certificate to the root.
//
// Be very careful about changing the order of checks. The order is significant
// because it affects which error we return when a certificate or certificate
// chain has multiple problems. See the error ranking documentation in
// pkix/pkix.h.
static Result
BuildForward(TrustDomain& trustDomain,
const BackCert& subject,
Time time,
KeyUsage requiredKeyUsageIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
/*optional*/ const Input* stapledOCSPResponse,
unsigned int subCACount)
{
Result rv;
TrustLevel trustLevel;
// If this is an end-entity and not a trust anchor, we defer reporting
// any error found here until after attempting to find a valid chain.
// See the explanation of error prioritization in pkix.h.
rv = CheckIssuerIndependentProperties(trustDomain, subject, time,
requiredKeyUsageIfPresent,
requiredEKUIfPresent, requiredPolicy,
subCACount, trustLevel);
Result deferredEndEntityError = Success;
if (rv != Success) {
if (subject.endEntityOrCA == EndEntityOrCA::MustBeEndEntity &&
trustLevel != TrustLevel::TrustAnchor) {
deferredEndEntityError = rv;
} else {
return rv;
}
}
if (trustLevel == TrustLevel::TrustAnchor) {
// End of the recursion.
NonOwningDERArray chain;
for (const BackCert* cert = &subject; cert; cert = cert->childCert) {
rv = chain.Append(cert->GetDER());
if (rv != Success) {
return NotReached("NonOwningDERArray::SetItem failed.", rv);
}
}
// This must be done here, after the chain is built but before any
// revocation checks have been done.
return trustDomain.IsChainValid(chain, time);
}
if (subject.endEntityOrCA == EndEntityOrCA::MustBeCA) {
// Avoid stack overflows and poor performance by limiting cert chain
// length.
static const unsigned int MAX_SUBCA_COUNT = 6;
static_assert(1/*end-entity*/ + MAX_SUBCA_COUNT + 1/*root*/ ==
NonOwningDERArray::MAX_LENGTH,
"MAX_SUBCA_COUNT and NonOwningDERArray::MAX_LENGTH mismatch.");
if (subCACount >= MAX_SUBCA_COUNT) {
return Result::ERROR_UNKNOWN_ISSUER;
}
++subCACount;
} else {
assert(subCACount == 0);
}
// Find a trusted issuer.
PathBuildingStep pathBuilder(trustDomain, subject, time,
requiredEKUIfPresent, requiredPolicy,
stapledOCSPResponse, subCACount);
// TODO(bug 965136): Add SKI/AKI matching optimizations
rv = trustDomain.FindIssuer(subject.GetIssuer(), pathBuilder, time);
if (rv != Success) {
return rv;
}
rv = pathBuilder.CheckResult();
if (rv != Success) {
return rv;
}
// If we found a valid chain but deferred reporting an error with the
// end-entity certificate, report it now.
if (deferredEndEntityError != Success) {
return deferredEndEntityError;
}
// We've built a valid chain from the subject cert up to a trusted root.
return Success;
}
示例6: CreateEncodedOCSPRequest
Result
CreateEncodedOCSPRequest(TrustDomain& trustDomain, const struct CertID& certID,
/*out*/ uint8_t (&out)[OCSP_REQUEST_MAX_LENGTH],
/*out*/ size_t& outLen)
{
// We do not add any extensions to the request.
// RFC 6960 says "An OCSP client MAY wish to specify the kinds of response
// types it understands. To do so, it SHOULD use an extension with the OID
// id-pkix-ocsp-response." This use of MAY and SHOULD is unclear. MSIE11
// on Windows 8.1 does not include any extensions, whereas NSS has always
// included the id-pkix-ocsp-response extension. Avoiding the sending the
// extension is better for OCSP GET because it makes the request smaller,
// and thus more likely to fit within the 255 byte limit for OCSP GET that
// is specified in RFC 5019 Section 5.
// Bug 966856: Add the id-pkix-ocsp-pref-sig-algs extension.
// Since we don't know whether the OCSP responder supports anything other
// than SHA-1, we have no choice but to use SHA-1 for issuerNameHash and
// issuerKeyHash.
static const uint8_t hashAlgorithm[11] = {
0x30, 0x09, // SEQUENCE
0x06, 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A, // OBJECT IDENTIFIER id-sha1
0x05, 0x00, // NULL
};
static const uint8_t hashLen = TrustDomain::DIGEST_LENGTH;
static const unsigned int totalLenWithoutSerialNumberData
= 2 // OCSPRequest
+ 2 // tbsRequest
+ 2 // requestList
+ 2 // Request
+ 2 // reqCert (CertID)
+ sizeof(hashAlgorithm) // hashAlgorithm
+ 2 + hashLen // issuerNameHash
+ 2 + hashLen // issuerKeyHash
+ 2; // serialNumber (header)
// The only way we could have a request this large is if the serialNumber was
// ridiculously and unreasonably large. RFC 5280 says "Conforming CAs MUST
// NOT use serialNumber values longer than 20 octets." With this restriction,
// we allow for some amount of non-conformance with that requirement while
// still ensuring we can encode the length values in the ASN.1 TLV structures
// in a single byte.
static_assert(totalLenWithoutSerialNumberData < OCSP_REQUEST_MAX_LENGTH,
"totalLenWithoutSerialNumberData too big");
if (certID.serialNumber.GetLength() >
OCSP_REQUEST_MAX_LENGTH - totalLenWithoutSerialNumberData) {
return Result::ERROR_BAD_DER;
}
outLen = totalLenWithoutSerialNumberData + certID.serialNumber.GetLength();
uint8_t totalLen = static_cast<uint8_t>(outLen);
uint8_t* d = out;
*d++ = 0x30; *d++ = totalLen - 2u; // OCSPRequest (SEQUENCE)
*d++ = 0x30; *d++ = totalLen - 4u; // tbsRequest (SEQUENCE)
*d++ = 0x30; *d++ = totalLen - 6u; // requestList (SEQUENCE OF)
*d++ = 0x30; *d++ = totalLen - 8u; // Request (SEQUENCE)
*d++ = 0x30; *d++ = totalLen - 10u; // reqCert (CertID SEQUENCE)
// reqCert.hashAlgorithm
for (size_t i = 0; i < sizeof(hashAlgorithm); ++i) {
*d++ = hashAlgorithm[i];
}
// reqCert.issuerNameHash (OCTET STRING)
*d++ = 0x04;
*d++ = hashLen;
Result rv = trustDomain.DigestBuf(certID.issuer, d, hashLen);
if (rv != Success) {
return rv;
}
d += hashLen;
// reqCert.issuerKeyHash (OCTET STRING)
*d++ = 0x04;
*d++ = hashLen;
rv = KeyHash(trustDomain, certID.issuerSubjectPublicKeyInfo, d, hashLen);
if (rv != Success) {
return rv;
}
d += hashLen;
// reqCert.serialNumber (INTEGER)
*d++ = 0x02; // INTEGER
*d++ = static_cast<uint8_t>(certID.serialNumber.GetLength());
Reader serialNumber(certID.serialNumber);
do {
rv = serialNumber.Read(*d);
if (rv != Success) {
return rv;
}
++d;
} while (!serialNumber.AtEnd());
assert(d == out + totalLen);
//.........这里部分代码省略.........
示例7: CheckIssuerIndependentProperties
Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
const BackCert& cert,
Time time,
KeyUsage requiredKeyUsageIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
unsigned int subCACount,
/*out*/ TrustLevel& trustLevel)
{
Result rv;
const EndEntityOrCA endEntityOrCA = cert.endEntityOrCA;
// Check the cert's trust first, because we want to minimize the amount of
// processing we do on a distrusted cert, in case it is trying to exploit
// some bug in our processing.
rv = trustDomain.GetCertTrust(endEntityOrCA, requiredPolicy, cert.GetDER(),
trustLevel);
if (rv != Success) {
return rv;
}
if (trustLevel == TrustLevel::TrustAnchor &&
endEntityOrCA == EndEntityOrCA::MustBeEndEntity &&
requiredEKUIfPresent == KeyPurposeId::id_kp_OCSPSigning) {
// OCSP signer certificates can never be trust anchors, especially
// since we don't support designated OCSP responders. All of the checks
// below that are dependent on trustLevel rely on this overriding of the
// trust level for OCSP signers.
trustLevel = TrustLevel::InheritsTrust;
}
switch (trustLevel) {
case TrustLevel::InheritsTrust:
rv = CheckSignatureAlgorithm(trustDomain, endEntityOrCA,
cert.GetSignedData(), cert.GetSignature());
if (rv != Success) {
return rv;
}
break;
case TrustLevel::TrustAnchor:
// We don't even bother checking signatureAlgorithm or signature for
// syntactic validity for trust anchors, because we don't use those
// fields for anything, and because the trust anchor might be signed
// with a signature algorithm we don't actually support.
break;
case TrustLevel::ActivelyDistrusted:
return Result::ERROR_UNTRUSTED_CERT;
}
// Check the SPKI early, because it is one of the most selective properties
// of the certificate due to SHA-1 deprecation and the deprecation of
// certificates with keys weaker than RSA 2048.
Reader spki(cert.GetSubjectPublicKeyInfo());
rv = der::Nested(spki, der::SEQUENCE, [&](Reader& r) {
return CheckSubjectPublicKeyInfo(r, trustDomain, endEntityOrCA);
});
if (rv != Success) {
return rv;
}
rv = der::End(spki);
if (rv != Success) {
return rv;
}
// 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).
// 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).
// 4.2.1.3. Key Usage
rv = CheckKeyUsage(endEntityOrCA, cert.GetKeyUsage(),
requiredKeyUsageIfPresent);
if (rv != Success) {
return rv;
}
// 4.2.1.4. Certificate Policies
rv = CheckCertificatePolicies(endEntityOrCA, cert.GetCertificatePolicies(),
cert.GetInhibitAnyPolicy(), trustLevel,
requiredPolicy);
if (rv != Success) {
return rv;
}
// 4.2.1.5. Policy Mappings are not supported; see the documentation about
// policy enforcement in pkix.h.
// 4.2.1.6. Subject Alternative Name dealt with during name constraint
// checking and during name verification (CERT_VerifyCertName).
// 4.2.1.7. Issuer Alternative Name is not something that needs checking.
// 4.2.1.8. Subject Directory Attributes is not something that needs
// checking.
// 4.2.1.9. Basic Constraints.
rv = CheckBasicConstraints(endEntityOrCA, cert.GetBasicConstraints(),
//.........这里部分代码省略.........
示例8: CheckSubjectPublicKeyInfo
Result
CheckSubjectPublicKeyInfo(Reader& input, TrustDomain& trustDomain,
EndEntityOrCA endEntityOrCA)
{
// Here, we validate the syntax and do very basic semantic validation of the
// public key of the certificate. The intention here is to filter out the
// types of bad inputs that are most likely to trigger non-mathematical
// security vulnerabilities in the TrustDomain, like buffer overflows or the
// use of unsafe elliptic curves.
//
// We don't check (all of) the mathematical properties of the public key here
// because it is more efficient for the TrustDomain to do it during signature
// verification and/or other use of the public key. In particular, we
// delegate the arithmetic validation of the public key, as specified in
// NIST SP800-56A section 5.6.2, to the TrustDomain, at least for now.
Reader algorithm;
Input subjectPublicKey;
Result rv = der::ExpectTagAndGetValue(input, der::SEQUENCE, algorithm);
if (rv != Success) {
return rv;
}
rv = der::BitStringWithNoUnusedBits(input, subjectPublicKey);
if (rv != Success) {
return rv;
}
rv = der::End(input);
if (rv != Success) {
return rv;
}
Reader subjectPublicKeyReader(subjectPublicKey);
Reader algorithmOID;
rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag, algorithmOID);
if (rv != Success) {
return rv;
}
// RFC 3279 Section 2.3.1
// python DottedOIDToCode.py rsaEncryption 1.2.840.113549.1.1.1
static const uint8_t rsaEncryption[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01
};
// RFC 3279 Section 2.3.5 and RFC 5480 Section 2.1.1
// python DottedOIDToCode.py id-ecPublicKey 1.2.840.10045.2.1
static const uint8_t id_ecPublicKey[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01
};
if (algorithmOID.MatchRest(id_ecPublicKey)) {
// An id-ecPublicKey AlgorithmIdentifier has a parameter that identifes
// the curve being used. Although RFC 5480 specifies multiple forms, we
// only supported the NamedCurve form, where the curve is identified by an
// OID.
Reader namedCurveOIDValue;
rv = der::ExpectTagAndGetValue(algorithm, der::OIDTag,
namedCurveOIDValue);
if (rv != Success) {
return rv;
}
// RFC 5480
// python DottedOIDToCode.py secp256r1 1.2.840.10045.3.1.7
static const uint8_t secp256r1[] = {
0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
};
// RFC 5480
// python DottedOIDToCode.py secp384r1 1.3.132.0.34
static const uint8_t secp384r1[] = {
0x2b, 0x81, 0x04, 0x00, 0x22
};
// RFC 5480
// python DottedOIDToCode.py secp521r1 1.3.132.0.35
static const uint8_t secp521r1[] = {
0x2b, 0x81, 0x04, 0x00, 0x23
};
// Matching is attempted based on a rough estimate of the commonality of the
// elliptic curve, to minimize the number of MatchRest calls.
NamedCurve curve;
unsigned int bits;
if (namedCurveOIDValue.MatchRest(secp256r1)) {
curve = NamedCurve::secp256r1;
bits = 256;
} else if (namedCurveOIDValue.MatchRest(secp384r1)) {
curve = NamedCurve::secp384r1;
bits = 384;
} else if (namedCurveOIDValue.MatchRest(secp521r1)) {
curve = NamedCurve::secp521r1;
bits = 521;
} else {
return Result::ERROR_UNSUPPORTED_ELLIPTIC_CURVE;
}
rv = trustDomain.CheckECDSACurveIsAcceptable(endEntityOrCA, curve);
//.........这里部分代码省略.........
示例9: BuildForward
// Recursively build the path from the given subject certificate to the root.
//
// Be very careful about changing the order of checks. The order is significant
// because it affects which error we return when a certificate or certificate
// chain has multiple problems. See the error ranking documentation in
// pkix/pkix.h.
static Result
BuildForward(TrustDomain& trustDomain,
BackCert& subject,
PRTime time,
EndEntityOrCA endEntityOrCA,
KeyUsage requiredKeyUsageIfPresent,
SECOidTag requiredEKUIfPresent,
SECOidTag requiredPolicy,
/*optional*/ const SECItem* stapledOCSPResponse,
unsigned int subCACount,
/*out*/ ScopedCERTCertList& results)
{
// Avoid stack overflows and poor performance by limiting cert length.
// XXX: 6 is not enough for chains.sh anypolicywithlevel.cfg tests
static const size_t MAX_DEPTH = 8;
if (subCACount >= MAX_DEPTH - 1) {
return Fail(RecoverableError, SEC_ERROR_UNKNOWN_ISSUER);
}
Result rv;
TrustDomain::TrustLevel trustLevel;
// If this is an end-entity and not a trust anchor, we defer reporting
// any error found here until after attempting to find a valid chain.
// See the explanation of error prioritization in pkix.h.
rv = CheckIssuerIndependentProperties(trustDomain, subject, time,
endEntityOrCA,
requiredKeyUsageIfPresent,
requiredEKUIfPresent, requiredPolicy,
subCACount, &trustLevel);
PRErrorCode deferredEndEntityError = 0;
if (rv != Success) {
if (endEntityOrCA == MustBeEndEntity &&
trustLevel != TrustDomain::TrustAnchor) {
deferredEndEntityError = PR_GetError();
} else {
return rv;
}
}
if (trustLevel == TrustDomain::TrustAnchor) {
// End of the recursion. Create the result list and add the trust anchor to
// it.
results = CERT_NewCertList();
if (!results) {
return FatalError;
}
rv = subject.PrependNSSCertToList(results.get());
return rv;
}
// Find a trusted issuer.
// TODO(bug 965136): Add SKI/AKI matching optimizations
ScopedCERTCertList candidates;
if (trustDomain.FindPotentialIssuers(&subject.GetNSSCert()->derIssuer, time,
candidates) != SECSuccess) {
return MapSECStatus(SECFailure);
}
if (!candidates) {
return Fail(RecoverableError, SEC_ERROR_UNKNOWN_ISSUER);
}
PRErrorCode errorToReturn = 0;
for (CERTCertListNode* n = CERT_LIST_HEAD(candidates);
!CERT_LIST_END(n, candidates); n = CERT_LIST_NEXT(n)) {
rv = BuildForwardInner(trustDomain, subject, time, endEntityOrCA,
requiredEKUIfPresent, requiredPolicy,
n->cert, stapledOCSPResponse, subCACount,
results);
if (rv == Success) {
// If we found a valid chain but deferred reporting an error with the
// end-entity certificate, report it now.
if (deferredEndEntityError != 0) {
PR_SetError(deferredEndEntityError, 0);
return FatalError;
}
SECStatus srv = trustDomain.CheckRevocation(endEntityOrCA,
subject.GetNSSCert(),
n->cert, time,
stapledOCSPResponse);
if (srv != SECSuccess) {
return MapSECStatus(SECFailure);
}
// We found a trusted issuer. At this point, we know the cert is valid
return subject.PrependNSSCertToList(results.get());
}
if (rv != RecoverableError) {
return rv;
}
PRErrorCode currentError = PR_GetError();
//.........这里部分代码省略.........
示例10: CheckIssuerIndependentProperties
Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
BackCert& cert,
PRTime time,
EndEntityOrCA endEntityOrCA,
KeyUsages requiredKeyUsagesIfPresent,
SECOidTag requiredEKUIfPresent,
SECOidTag requiredPolicy,
unsigned int subCACount,
/*optional out*/ TrustDomain::TrustLevel* trustLevelOut)
{
Result rv;
TrustDomain::TrustLevel trustLevel;
rv = MapSECStatus(trustDomain.GetCertTrust(endEntityOrCA,
requiredPolicy,
cert.GetNSSCert(),
&trustLevel));
if (rv != Success) {
return rv;
}
if (trustLevel == TrustDomain::ActivelyDistrusted) {
PORT_SetError(SEC_ERROR_UNTRUSTED_CERT);
return RecoverableError;
}
if (trustLevel != TrustDomain::TrustAnchor &&
trustLevel != TrustDomain::InheritsTrust) {
// The TrustDomain returned a trust level that we weren't expecting.
PORT_SetError(PR_INVALID_STATE_ERROR);
return FatalError;
}
if (trustLevelOut) {
*trustLevelOut = trustLevel;
}
bool isTrustAnchor = endEntityOrCA == MustBeCA &&
trustLevel == TrustDomain::TrustAnchor;
PLArenaPool* arena = cert.GetArena();
if (!arena) {
return FatalError;
}
// 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).
// 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).
// 4.2.1.3. Key Usage
rv = CheckKeyUsage(endEntityOrCA, isTrustAnchor, cert.encodedKeyUsage,
requiredKeyUsagesIfPresent, arena);
if (rv != Success) {
return rv;
}
// 4.2.1.4. Certificate Policies
rv = CheckCertificatePolicies(cert, endEntityOrCA, isTrustAnchor,
requiredPolicy);
if (rv != Success) {
return rv;
}
// 4.2.1.5. Policy Mappings are not supported; see the documentation about
// policy enforcement in pkix.h.
// 4.2.1.6. Subject Alternative Name dealt with during name constraint
// checking and during name verification (CERT_VerifyCertName).
// 4.2.1.7. Issuer Alternative Name is not something that needs checking.
// 4.2.1.8. Subject Directory Attributes is not something that needs
// checking.
// 4.2.1.9. Basic Constraints.
rv = CheckBasicConstraints(cert, endEntityOrCA, isTrustAnchor, subCACount);
if (rv != Success) {
return rv;
}
// 4.2.1.10. Name Constraints is dealt with in during path building.
// 4.2.1.11. Policy Constraints are implicitly supported; see the
// documentation about policy enforcement in pkix.h.
// 4.2.1.12. Extended Key Usage
rv = CheckExtendedKeyUsage(endEntityOrCA, cert.encodedExtendedKeyUsage,
requiredEKUIfPresent);
if (rv != Success) {
return rv;
}
// 4.2.1.13. CRL Distribution Points is not supported, though the
// TrustDomain's CheckRevocation method may parse it and process it
// on its own.
// 4.2.1.14. Inhibit anyPolicy is implicitly supported; see the documentation
// about policy enforcement in pkix.h.
// IMPORTANT: This check must come after the other checks in order for error
// ranking to work correctly.
rv = CheckTimes(cert.GetNSSCert(), time);
//.........这里部分代码省略.........
示例11: CheckIssuerIndependentProperties
Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
BackCert& cert,
PRTime time,
EndEntityOrCA endEntityOrCA,
KeyUsages requiredKeyUsagesIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
unsigned int subCACount,
/*optional out*/ TrustLevel* trustLevelOut)
{
Result rv;
TrustLevel trustLevel;
rv = MapSECStatus(trustDomain.GetCertTrust(endEntityOrCA,
requiredPolicy,
cert.GetNSSCert(),
&trustLevel));
if (rv != Success) {
return rv;
}
if (trustLevel == TrustLevel::ActivelyDistrusted) {
return Fail(RecoverableError, SEC_ERROR_UNTRUSTED_CERT);
}
if (trustLevel != TrustLevel::TrustAnchor &&
trustLevel != TrustLevel::InheritsTrust) {
// The TrustDomain returned a trust level that we weren't expecting.
PORT_SetError(PR_INVALID_STATE_ERROR);
return FatalError;
}
if (trustLevelOut) {
*trustLevelOut = trustLevel;
}
// XXX: Good enough for now. There could be an illegal explicit version
// number or one we don't support, but we can safely treat those all as v3
// for now since processing of v3 certificates is strictly more strict than
// processing of v1 certificates.
der::Version version = (!cert.GetNSSCert()->version.data &&
!cert.GetNSSCert()->version.len) ? der::Version::v1
: der::Version::v3;
PLArenaPool* arena = cert.GetArena();
if (!arena) {
return FatalError;
}
// 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).
// 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).
// 4.2.1.3. Key Usage
rv = CheckKeyUsage(endEntityOrCA, cert.encodedKeyUsage,
requiredKeyUsagesIfPresent, arena);
if (rv != Success) {
return rv;
}
// 4.2.1.4. Certificate Policies
rv = CheckCertificatePolicies(endEntityOrCA, cert.encodedCertificatePolicies,
cert.encodedInhibitAnyPolicy, trustLevel,
requiredPolicy);
if (rv != Success) {
return rv;
}
// 4.2.1.5. Policy Mappings are not supported; see the documentation about
// policy enforcement in pkix.h.
// 4.2.1.6. Subject Alternative Name dealt with during name constraint
// checking and during name verification (CERT_VerifyCertName).
// 4.2.1.7. Issuer Alternative Name is not something that needs checking.
// 4.2.1.8. Subject Directory Attributes is not something that needs
// checking.
// 4.2.1.9. Basic Constraints.
rv = CheckBasicConstraints(endEntityOrCA, cert.encodedBasicConstraints,
version, trustLevel, subCACount);
if (rv != Success) {
return rv;
}
// 4.2.1.10. Name Constraints is dealt with in during path building.
// 4.2.1.11. Policy Constraints are implicitly supported; see the
// documentation about policy enforcement in pkix.h.
// 4.2.1.12. Extended Key Usage
rv = CheckExtendedKeyUsage(endEntityOrCA, cert.encodedExtendedKeyUsage,
requiredEKUIfPresent);
if (rv != Success) {
return rv;
}
// 4.2.1.13. CRL Distribution Points is not supported, though the
// TrustDomain's CheckRevocation method may parse it and process it
// on its own.
//.........这里部分代码省略.........
示例12: CheckIssuerIndependentProperties
Result
CheckIssuerIndependentProperties(TrustDomain& trustDomain,
const BackCert& cert,
PRTime time,
KeyUsage requiredKeyUsageIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
unsigned int subCACount,
/*out*/ TrustLevel& trustLevel)
{
Result rv;
const EndEntityOrCA endEntityOrCA = cert.endEntityOrCA;
rv = trustDomain.GetCertTrust(endEntityOrCA, requiredPolicy, cert.GetDER(),
trustLevel);
if (rv != Success) {
return rv;
}
if (trustLevel == TrustLevel::ActivelyDistrusted) {
return Result::ERROR_UNTRUSTED_CERT;
}
if (trustLevel != TrustLevel::TrustAnchor &&
trustLevel != TrustLevel::InheritsTrust) {
// The TrustDomain returned a trust level that we weren't expecting.
return Result::FATAL_ERROR_INVALID_STATE;
}
// 4.2.1.1. Authority Key Identifier is ignored (see bug 965136).
// 4.2.1.2. Subject Key Identifier is ignored (see bug 965136).
// 4.2.1.3. Key Usage
rv = CheckKeyUsage(endEntityOrCA, cert.GetKeyUsage(),
requiredKeyUsageIfPresent);
if (rv != Success) {
return rv;
}
// 4.2.1.4. Certificate Policies
rv = CheckCertificatePolicies(endEntityOrCA, cert.GetCertificatePolicies(),
cert.GetInhibitAnyPolicy(), trustLevel,
requiredPolicy);
if (rv != Success) {
return rv;
}
// 4.2.1.5. Policy Mappings are not supported; see the documentation about
// policy enforcement in pkix.h.
// 4.2.1.6. Subject Alternative Name dealt with during name constraint
// checking and during name verification (CERT_VerifyCertName).
// 4.2.1.7. Issuer Alternative Name is not something that needs checking.
// 4.2.1.8. Subject Directory Attributes is not something that needs
// checking.
// 4.2.1.9. Basic Constraints.
rv = CheckBasicConstraints(endEntityOrCA, cert.GetBasicConstraints(),
cert.GetVersion(), trustLevel, subCACount);
if (rv != Success) {
return rv;
}
// 4.2.1.10. Name Constraints is dealt with in during path building.
// 4.2.1.11. Policy Constraints are implicitly supported; see the
// documentation about policy enforcement in pkix.h.
// 4.2.1.12. Extended Key Usage
rv = CheckExtendedKeyUsage(endEntityOrCA, cert.GetExtKeyUsage(),
requiredEKUIfPresent);
if (rv != Success) {
return rv;
}
// 4.2.1.13. CRL Distribution Points is not supported, though the
// TrustDomain's CheckRevocation method may parse it and process it
// on its own.
// 4.2.1.14. Inhibit anyPolicy is implicitly supported; see the documentation
// about policy enforcement in pkix.h.
// IMPORTANT: This check must come after the other checks in order for error
// ranking to work correctly.
rv = CheckValidity(cert.GetValidity(), time);
if (rv != Success) {
return rv;
}
return Success;
}
示例13: BuildForward
// Recursively build the path from the given subject certificate to the root.
//
// Be very careful about changing the order of checks. The order is significant
// because it affects which error we return when a certificate or certificate
// chain has multiple problems. See the error ranking documentation in
// pkix/pkix.h.
static Result
BuildForward(TrustDomain& trustDomain,
BackCert& subject,
PRTime time,
EndEntityOrCA endEntityOrCA,
KeyUsages requiredKeyUsagesIfPresent,
KeyPurposeId requiredEKUIfPresent,
const CertPolicyId& requiredPolicy,
/*optional*/ const SECItem* stapledOCSPResponse,
unsigned int subCACount,
/*out*/ ScopedCERTCertList& results)
{
Result rv;
TrustLevel trustLevel;
// If this is an end-entity and not a trust anchor, we defer reporting
// any error found here until after attempting to find a valid chain.
// See the explanation of error prioritization in pkix.h.
rv = CheckIssuerIndependentProperties(trustDomain, subject, time,
endEntityOrCA,
requiredKeyUsagesIfPresent,
requiredEKUIfPresent, requiredPolicy,
subCACount, &trustLevel);
PRErrorCode deferredEndEntityError = 0;
if (rv != Success) {
if (endEntityOrCA == EndEntityOrCA::MustBeEndEntity &&
trustLevel != TrustLevel::TrustAnchor) {
deferredEndEntityError = PR_GetError();
} else {
return rv;
}
}
if (trustLevel == TrustLevel::TrustAnchor) {
// End of the recursion.
// Construct the results cert chain.
results = CERT_NewCertList();
if (!results) {
return MapSECStatus(SECFailure);
}
for (BackCert* cert = &subject; cert; cert = cert->childCert) {
CERTCertificate* dup = CERT_DupCertificate(cert->GetNSSCert());
if (CERT_AddCertToListHead(results.get(), dup) != SECSuccess) {
CERT_DestroyCertificate(dup);
return MapSECStatus(SECFailure);
}
// dup is now owned by results.
}
// This must be done here, after the chain is built but before any
// revocation checks have been done.
SECStatus srv = trustDomain.IsChainValid(results.get());
if (srv != SECSuccess) {
return MapSECStatus(srv);
}
return Success;
}
if (endEntityOrCA == EndEntityOrCA::MustBeCA) {
// Avoid stack overflows and poor performance by limiting cert chain
// length.
static const unsigned int MAX_SUBCA_COUNT = 6;
if (subCACount >= MAX_SUBCA_COUNT) {
return Fail(RecoverableError, SEC_ERROR_UNKNOWN_ISSUER);
}
++subCACount;
} else {
PR_ASSERT(subCACount == 0);
}
// Find a trusted issuer.
// TODO(bug 965136): Add SKI/AKI matching optimizations
ScopedCERTCertList candidates;
if (trustDomain.FindPotentialIssuers(&subject.GetNSSCert()->derIssuer, time,
candidates) != SECSuccess) {
return MapSECStatus(SECFailure);
}
if (!candidates) {
return Fail(RecoverableError, SEC_ERROR_UNKNOWN_ISSUER);
}
PRErrorCode errorToReturn = 0;
for (CERTCertListNode* n = CERT_LIST_HEAD(candidates);
!CERT_LIST_END(n, candidates); n = CERT_LIST_NEXT(n)) {
rv = BuildForwardInner(trustDomain, subject, time, requiredEKUIfPresent,
requiredPolicy, n->cert->derCert, subCACount,
results);
if (rv == Success) {
// If we found a valid chain but deferred reporting an error with the
// end-entity certificate, report it now.
if (deferredEndEntityError != 0) {
//.........这里部分代码省略.........