本文整理汇总了C++中TopologyNode::isTip方法的典型用法代码示例。如果您正苦于以下问题:C++ TopologyNode::isTip方法的具体用法?C++ TopologyNode::isTip怎么用?C++ TopologyNode::isTip使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TopologyNode
的用法示例。
在下文中一共展示了TopologyNode::isTip方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: rejectCompoundMove
void RateAgeACLNMixingMove::rejectCompoundMove( void ) {
// undo the proposal
TimeTree& tau = tree->getValue();
std::vector<double>& nrates = rates->getValue();
double &rootR = rootRate->getValue();
size_t nn = tau.getNumberOfNodes();
double c = storedC;
for(size_t i=0; i<nn; i++){
TopologyNode* node = &tau.getNode(i);
if(node->isTip() == false){
double curAge = node->getAge();
double undoAge = curAge / c;
tau.setAge( node->getIndex(), undoAge );
}
}
size_t nr = nrates.size();
rootR = rootR * c;
for(size_t i=0; i<nr; i++){
double curRt = nrates[i];
double undoRt = curRt * c;
nrates[i] = undoRt;
}
#ifdef ASSERTIONS_TREE
if ( fabs(storedRootAge - tau.getRoot().getAge()) > 1E-8 ) {
throw RbException("Error while rejecting RateAgeACLNMixingMove proposal: Node ages were not correctly restored!");
}
#endif
}
示例2: recursiveClampAt
void RealNodeContainer::recursiveClampAt(const TopologyNode& from, const ContinuousCharacterData* data, size_t l) {
if (from.isTip()) {
// get taxon index
size_t index = from.getIndex();
std::string taxon = tree->getTipNames()[index];
size_t dataindex = data->getIndexOfTaxon(taxon);
if (data->getCharacter(dataindex,l) != -1000) {
(*this)[index] = data->getCharacter(dataindex,l);
clampVector[index] = true;
//std::cerr << "taxon : " << index << '\t' << taxon << " trait value : " << (*this)[index] << '\n';
}
else {
std::cerr << "taxon : " << taxon << " is missing for trait " << l+1 << '\n';
}
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveClampAt(from.getChild(i),data,l);
}
}
示例3: if
std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getOldestSubtreesNodesInPopulation( Tree &tau, TopologyNode &n )
{
// I need all the oldest nodes/subtrees that have the same tips.
// Those nodes need to be scaled too.
// get the beginning and ending age of the population
double max_age = -1.0;
if ( n.isRoot() == false )
{
max_age = n.getParent().getAge();
}
// get all the taxa from the species tree that are descendants of node i
std::vector<TopologyNode*> species_taxa;
TreeUtilities::getTaxaInSubtree( &n, species_taxa );
// get all the individuals
std::set<TopologyNode*> individualTaxa;
for (size_t i = 0; i < species_taxa.size(); ++i)
{
const std::string &name = species_taxa[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa.insert( ind[j] );
}
}
// create the set of the nodes within this population
std::set<TopologyNode*> nodesInPopulationSet;
// now go through all nodes in the gene
while ( individualTaxa.empty() == false )
{
std::set<TopologyNode*>::iterator it = individualTaxa.begin();
individualTaxa.erase( it );
TopologyNode *geneNode = *it;
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
{
// push the parent to our current list
individualTaxa.insert( &geneNode->getParent() );
}
else if ( geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
}
return nodesInPopulationSet;
}
示例4: doProposal
/**
* Perform the proposal.
*
* A Beta-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Beta(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double SubtreeScaleProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// lower bound
double min_age = 0.0;
TreeUtilities::getOldestTip(&tau, node, min_age);
// draw new ages and compute the hastings ratio at the same time
double my_new_age = min_age + (parent_age - min_age) * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
if (min_age != 0.0)
{
for (size_t i = 0; i < tau.getNumberOfTips(); i++)
{
if (tau.getNode(i).getAge() < 0.0) {
return RbConstants::Double::neginf;
}
}
}
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例5: attachTimes
/**
* Recursive call to attach ordered interior node times to the time tree psi. Call it initially with the
* root of the tree.
*/
void HeterogeneousRateBirthDeath::attachTimes(Tree* psi, std::vector<TopologyNode *> &nodes, size_t index, const std::vector<double> &interiorNodeTimes, double originTime )
{
if (index < num_taxa-1)
{
// Get the rng
RandomNumberGenerator* rng = GLOBAL_RNG;
// Randomly draw one node from the list of nodes
size_t node_index = static_cast<size_t>( floor(rng->uniform01()*nodes.size()) );
// Get the node from the list
TopologyNode* parent = nodes.at(node_index);
psi->getNode( parent->getIndex() ).setAge( originTime - interiorNodeTimes[index] );
// Remove the randomly drawn node from the list
nodes.erase(nodes.begin()+long(node_index));
// Add the left child if an interior node
TopologyNode* leftChild = &parent->getChild(0);
if ( !leftChild->isTip() )
{
nodes.push_back(leftChild);
}
// Add the right child if an interior node
TopologyNode* rightChild = &parent->getChild(1);
if ( !rightChild->isTip() )
{
nodes.push_back(rightChild);
}
// Recursive call to this function
attachTimes(psi, nodes, index+1, interiorNodeTimes, originTime);
}
}
示例6: recursiveGetStatsOverTips
void RealNodeContainer::recursiveGetStatsOverTips(const TopologyNode& from, double& e1, double& e2, int& n) const {
if(from.isTip()) {
double tmp = (*this)[from.getIndex()];
n++;
e1 += tmp;
e2 += tmp * tmp;
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveGetStatsOverTips(from.getChild(i),e1,e2,n);
}
}
示例7: recursiveGetTipValues
void RealNodeContainer::recursiveGetTipValues(const TopologyNode& from, ContinuousCharacterData& nameToVal) const {
if(from.isTip()) {
double tmp = (*this)[from.getIndex()];
std::string name = tree->getTipNames()[from.getIndex()];
ContinuousTaxonData dataVec = ContinuousTaxonData(name);
double contObs = tmp;
dataVec.addCharacter( contObs );
nameToVal.addTaxonData( dataVec );
return;
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveGetTipValues(from.getChild(i), nameToVal );
}
}
示例8: recursiveGetNewick
std::string RealNodeContainer::recursiveGetNewick(const TopologyNode& from) const {
std::ostringstream s;
if (from.isTip()) {
s << getTimeTree()->getTipNames()[from.getIndex()] << "_";
// std::cerr << from.getIndex() << '\t' << getTimeTree()->getTipNames()[from.getIndex()] << "_";
// std::cerr << (*this)[from.getIndex()] << '\n';
// exit(1);
}
else {
s << "(";
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
s << recursiveGetNewick(from.getChild(i));
if (i < numChildren-1) {
s << ",";
}
}
s << ")";
}
s << (*this)[from.getIndex()];
/* if (from.isTip() && (! isClamped(from.getIndex()))) {
std::cerr << "leaf is not clamped\n";
// get taxon index
size_t index = from.getIndex();
std::cerr << "index : " << index << '\n';
std::string taxon = tree->getTipNames()[index];
std::cerr << "taxon : " << index << '\t' << taxon << '\n';
std::cerr << " trait value : " << (*this)[index] << '\n';
exit(1);
}*/
// if (!from.isRoot()) {
s << ":";
s << getTimeTree()->getBranchLength(from.getIndex());
// }
return s.str();
}
示例9: performSimpleMove
/** Perform the move */
double SubtreeScale::performSimpleMove( void ) {
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = parent_age * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例10: doProposal
/**
* Perform the proposal.
*
* A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Uniform(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double NodeTimeSlideUniformProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = variable->getValue();
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;
// set the age
tau.getNode(node->getIndex()).setAge( my_new_age );
return 0.0;
}
示例11: performCompoundMove
/** Perform the move */
double RateAgeACLNMixingMove::performCompoundMove( void ) {
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = tree->getValue();
std::vector<double>& nrates = rates->getValue();
double &rootR = rootRate->getValue();
size_t nn = tau.getNumberOfNodes();
double u = rng->uniform01();
double c = exp( epsilon * (u - 0.5) );
for(size_t i=0; i<nn; i++){
TopologyNode* node = &tau.getNode(i);
if(node->isTip() == false){
double curAge = node->getAge();
double newAge = curAge * c;
tau.setAge( node->getIndex(), newAge );
if(node->isRoot()){
storedRootAge = curAge;
}
}
}
size_t nr = nrates.size();
rootR = rootR / c;
for(size_t i=0; i<nrates.size(); i++){
double curRt = nrates[i];
double newRt = curRt / c;
nrates[i] = newRt;
}
storedC = c;
double pr = (((double)nn) - (double)nr) * log(c);
return pr;
}
示例12: recursiveComputeLnProbability
void PhyloBrownianProcessREML::recursiveComputeLnProbability( const TopologyNode &node, size_t nodeIndex )
{
// check for recomputation
if ( node.isTip() == false && dirtyNodes[nodeIndex] )
{
// mark as computed
dirtyNodes[nodeIndex] = false;
std::vector<double> &p_node = this->partialLikelihoods[this->activeLikelihood[nodeIndex]][nodeIndex];
std::vector<double> &mu_node = this->contrasts[this->activeLikelihood[nodeIndex]][nodeIndex];
// get the number of children
size_t num_children = node.getNumberOfChildren();
for (size_t j = 1; j < num_children; ++j)
{
size_t leftIndex = nodeIndex;
const TopologyNode *left = &node;
if ( j == 1 )
{
left = &node.getChild(0);
leftIndex = left->getIndex();
recursiveComputeLnProbability( *left, leftIndex );
}
const TopologyNode &right = node.getChild(j);
size_t rightIndex = right.getIndex();
recursiveComputeLnProbability( right, rightIndex );
const std::vector<double> &p_left = this->partialLikelihoods[this->activeLikelihood[leftIndex]][leftIndex];
const std::vector<double> &p_right = this->partialLikelihoods[this->activeLikelihood[rightIndex]][rightIndex];
// get the per node and site contrasts
const std::vector<double> &mu_left = this->contrasts[this->activeLikelihood[leftIndex]][leftIndex];
const std::vector<double> &mu_right = this->contrasts[this->activeLikelihood[rightIndex]][rightIndex];
// get the propagated uncertainties
double delta_left = this->contrastUncertainty[this->activeLikelihood[leftIndex]][leftIndex];
double delta_right = this->contrastUncertainty[this->activeLikelihood[rightIndex]][rightIndex];
// get the scaled branch lengths
double v_left = 0;
if ( j == 1 )
{
v_left = this->computeBranchTime(leftIndex, left->getBranchLength());
}
double v_right = this->computeBranchTime(rightIndex, right.getBranchLength());
// add the propagated uncertainty to the branch lengths
double t_left = v_left + delta_left;
double t_right = v_right + delta_right;
// set delta_node = (t_l*t_r)/(t_l+t_r);
this->contrastUncertainty[this->activeLikelihood[nodeIndex]][nodeIndex] = (t_left*t_right) / (t_left+t_right);
double stdev = sqrt(t_left+t_right);
for (int i=0; i<this->numSites; i++)
{
mu_node[i] = (mu_left[i]*t_right + mu_right[i]*t_left) / (t_left+t_right);
// get the site specific rate of evolution
double standDev = this->computeSiteRate(i) * stdev;
// compute the contrasts for this site and node
double contrast = mu_left[i] - mu_right[i];
// compute the probability for the contrasts at this node
double lnl_node = RbStatistics::Normal::lnPdf(0, standDev, contrast);
// sum up the probabilities of the contrasts
p_node[i] = lnl_node + p_left[i] + p_right[i];
} // end for-loop over all sites
} // end for-loop over all children
} // end if we need to compute something for this node.
}
示例13: while
std::vector<TopologyNode*> TreeNodeAgeUpdateProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{
// I need all the oldest nodes/subtrees that have the same tips.
// Those nodes need to be scaled too.
// get the beginning and ending age of the population
double max_age = -1.0;
if ( n.isRoot() == false )
{
max_age = n.getParent().getAge();
}
// get all the taxa from the species tree that are descendants of node i
double min_age_left = n.getChild(0).getAge();
std::vector<TopologyNode*> speciesTaxa_left;
TreeUtilities::getTaxaInSubtree( &n.getChild(0), speciesTaxa_left );
// get all the individuals
std::set<TopologyNode*> individualTaxa_left;
for (size_t i = 0; i < speciesTaxa_left.size(); ++i)
{
const std::string &name = speciesTaxa_left[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa_left.insert( ind[j] );
}
}
// create the set of the nodes within this population
std::set<TopologyNode*> nodesInPopulationSet;
// now go through all nodes in the gene
while ( individualTaxa_left.empty() == false )
{
// get the first element
std::set<TopologyNode*>::iterator it = individualTaxa_left.begin();
// store the pointer
TopologyNode *geneNode = *it;
// and now remove the element from the list
individualTaxa_left.erase( it );
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->getAge() > min_age_left && geneNode->getAge() < max_age && geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
{
// push the parent to our current list
individualTaxa_left.insert( &geneNode->getParent() );
}
}
// get all the taxa from the species tree that are descendants of node i
double min_age_right = n.getChild(1).getAge();
std::vector<TopologyNode*> speciesTaxa_right;
TreeUtilities::getTaxaInSubtree( &n.getChild(1), speciesTaxa_right );
// get all the individuals
std::set<TopologyNode*> individualTaxa_right;
for (size_t i = 0; i < speciesTaxa_right.size(); ++i)
{
const std::string &name = speciesTaxa_right[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa_right.insert( ind[j] );
}
}
// now go through all nodes in the gene
while ( individualTaxa_right.empty() == false )
{
// get the first element
std::set<TopologyNode*>::iterator it = individualTaxa_right.begin();
// store the pointer
TopologyNode *geneNode = *it;
// and now remove the element from the list
individualTaxa_right.erase( it );
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->getAge() > min_age_right && geneNode->getAge() < max_age && geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
//.........这里部分代码省略.........
示例14: performMcmcMove
/** Perform the move */
void RateAgeBetaShift::performMcmcMove( double lHeat, double pHeat )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = tree->getValue();
RbOrderedSet<DagNode*> affected;
tree->getAffectedNodes( affected );
double oldLnLike = 0.0;
bool checkLikelihoodShortcuts = rng->uniform01() < 0.001;
if ( checkLikelihoodShortcuts == true )
{
for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
{
(*it)->touch();
oldLnLike += (*it)->getLnProbability();
}
}
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
size_t nodeIdx = 0;
do {
double u = rng->uniform01();
nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(nodeIdx);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
storedRates[nodeIdx] = rates[nodeIdx]->getValue();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
storedRates[childIdx] = rates[childIdx]->getValue();
}
// draw new ages and compute the hastings ratio at the same time
double m = (my_age-child_Age) / (parent_age-child_Age);
double a = delta * m + 1.0;
double b = delta * (1.0-m) + 1.0;
double new_m = RbStatistics::Beta::rv(a, b, *rng);
double my_new_age = (parent_age-child_Age) * new_m + child_Age;
// compute the Hastings ratio
double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
double new_a = delta * new_m + 1.0;
double new_b = delta * (1.0-new_m) + 1.0;
double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
// set the age
tau.getNode(nodeIdx).setAge( my_new_age );
// touch the tree so that the likelihoods are getting stored
tree->touch();
// get the probability ratio of the tree
double treeProbRatio = tree->getLnProbabilityRatio();
// set the rates
double pa = node->getParent().getAge();
double my_new_rate =(pa - my_age) * storedRates[nodeIdx] / (pa - my_new_age);
// now we set the new value
// this will automcatically call a touch
rates[nodeIdx]->setValue( new double( my_new_rate ) );
// get the probability ratio of the new rate
double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
double a = node->getChild(i).getAge();
double child_new_rate = (my_age - a) * storedRates[childIdx] / (my_new_age - a);
// now we set the new value
// this will automcatically call a touch
rates[childIdx]->setValue( new double( child_new_rate ) );
// get the probability ratio of the new rate
//.........这里部分代码省略.........
示例15: performMove
/** Perform the move */
void RateAgeBetaShift::performMove( double heat, bool raiseLikelihoodOnly )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = tree->getValue();
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
size_t nodeIdx = 0;
do {
double u = rng->uniform01();
nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(nodeIdx);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
storedRates[nodeIdx] = rates[nodeIdx]->getValue();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
storedRates[childIdx] = rates[childIdx]->getValue();
}
// draw new ages and compute the hastings ratio at the same time
double m = (my_age-child_Age) / (parent_age-child_Age);
double a = delta * m + 1.0;
double b = delta * (1.0-m) + 1.0;
double new_m = RbStatistics::Beta::rv(a, b, *rng);
double my_new_age = (parent_age-child_Age) * new_m + child_Age;
// compute the Hastings ratio
double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
double new_a = delta * new_m + 1.0;
double new_b = delta * (1.0-new_m) + 1.0;
double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
// set the age
tau.setAge( node->getIndex(), my_new_age );
tree->touch();
double treeProbRatio = tree->getLnProbabilityRatio();
// set the rates
rates[nodeIdx]->setValue( new double((node->getParent().getAge() - my_age) * storedRates[nodeIdx] / (node->getParent().getAge() - my_new_age)));
double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
rates[childIdx]->setValue( new double((my_age - node->getChild(i).getAge()) * storedRates[childIdx] / (my_new_age - node->getChild(i).getAge())));
ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();
}
std::set<DagNode*> affected;
tree->getAffectedNodes( affected );
double lnProbRatio = 0;
for (std::set<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
{
(*it)->touch();
lnProbRatio += (*it)->getLnProbabilityRatio();
}
if ( fabs(lnProbRatio) > 1E-6 ) {
// throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
std::cout << "Likelihood shortcut computation failed in rate-age-proposal." << std::endl;
}
double hastingsRatio = backward - forward;
double lnAcceptanceRatio = treeProbRatio + ratesProbRatio + hastingsRatio;
if (lnAcceptanceRatio >= 0.0)
{
numAccepted++;
tree->keep();
rates[nodeIdx]->keep();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
//.........这里部分代码省略.........