本文整理汇总了C++中TopologyNode::isRoot方法的典型用法代码示例。如果您正苦于以下问题:C++ TopologyNode::isRoot方法的具体用法?C++ TopologyNode::isRoot怎么用?C++ TopologyNode::isRoot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TopologyNode
的用法示例。
在下文中一共展示了TopologyNode::isRoot方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getOldestSubtreesNodesInPopulation( Tree &tau, TopologyNode &n )
{
// I need all the oldest nodes/subtrees that have the same tips.
// Those nodes need to be scaled too.
// get the beginning and ending age of the population
double max_age = -1.0;
if ( n.isRoot() == false )
{
max_age = n.getParent().getAge();
}
// get all the taxa from the species tree that are descendants of node i
std::vector<TopologyNode*> species_taxa;
TreeUtilities::getTaxaInSubtree( &n, species_taxa );
// get all the individuals
std::set<TopologyNode*> individualTaxa;
for (size_t i = 0; i < species_taxa.size(); ++i)
{
const std::string &name = species_taxa[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa.insert( ind[j] );
}
}
// create the set of the nodes within this population
std::set<TopologyNode*> nodesInPopulationSet;
// now go through all nodes in the gene
while ( individualTaxa.empty() == false )
{
std::set<TopologyNode*>::iterator it = individualTaxa.begin();
individualTaxa.erase( it );
TopologyNode *geneNode = *it;
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
{
// push the parent to our current list
individualTaxa.insert( &geneNode->getParent() );
}
else if ( geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
}
return nodesInPopulationSet;
}
示例2: recursiveSimulate
void PhyloWhiteNoiseProcess::recursiveSimulate(const TopologyNode& from)
{
if (! from.isRoot())
{
// get the index
size_t index = from.getIndex();
// compute the variance along the branch
double mean = 1.0;
double stdev = sigma->getValue() / sqrt(from.getBranchLength());
double alpha = mean * mean / (stdev * stdev);
double beta = mean / (stdev * stdev);
// simulate a new Val
RandomNumberGenerator* rng = GLOBAL_RNG;
double v = RbStatistics::Gamma::rv( alpha,beta, *rng);
// we store this val here
(*value)[index] = v;
}
// simulate the val for each child (if any)
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i)
{
const TopologyNode& child = from.getChild(i);
recursiveSimulate(child);
}
}
示例3: recursiveSimulate
void MultivariateBrownianPhyloProcess::recursiveSimulate(const TopologyNode& from) {
size_t index = from.getIndex();
if (from.isRoot()) {
std::vector<double>& val = (*value)[index];
for (size_t i=0; i<getDim(); i++) {
val[i] = 0;
}
}
else {
// x ~ normal(x_up, sigma^2 * branchLength)
std::vector<double>& val = (*value)[index];
sigma->getValue().drawNormalSampleCovariance((*value)[index]);
size_t upindex = from.getParent().getIndex();
std::vector<double>& upval = (*value)[upindex];
for (size_t i=0; i<getDim(); i++) {
val[i] += upval[i];
}
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveSimulate(from.getChild(i));
}
}
示例4: recursivelyFlagNodeDirty
void PhyloBrownianProcessREML::recursivelyFlagNodeDirty( const TopologyNode &n )
{
// we need to flag this node and all ancestral nodes for recomputation
size_t index = n.getIndex();
// if this node is already dirty, the also all the ancestral nodes must have been flagged as dirty
if ( !dirtyNodes[index] )
{
// the root doesn't have an ancestor
if ( !n.isRoot() )
{
recursivelyFlagNodeDirty( n.getParent() );
}
// set the flag
dirtyNodes[index] = true;
// if we previously haven't touched this node, then we need to change the active likelihood pointer
if ( changedNodes[index] == false )
{
activeLikelihood[index] = (activeLikelihood[index] == 0 ? 1 : 0);
changedNodes[index] = true;
}
}
}
示例5: recursiveLnProb
double BrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
double lnProb = 0.0;
size_t index = from.getIndex();
double val = (*value)[index];
if (! from.isRoot()) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
double standDev = sigma->getValue() * sqrt(from.getBranchLength());
double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
lnProb += RbStatistics::Normal::lnPdf(val, standDev, mean);
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
lnProb += recursiveLnProb(from.getChild(i));
}
return lnProb;
}
示例6: recursiveSimulate
void BrownianPhyloProcess::recursiveSimulate(const TopologyNode& from) {
size_t index = from.getIndex();
if (! from.isRoot()) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
double standDev = sigma->getValue() * sqrt(from.getBranchLength());
double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
// simulate the new Val
RandomNumberGenerator* rng = GLOBAL_RNG;
(*value)[index] = RbStatistics::Normal::rv( mean, standDev, *rng);
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveSimulate(from.getChild(i));
}
}
示例7: doProposal
/**
* Perform the proposal.
*
* A Beta-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Beta(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double SubtreeScaleProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// lower bound
double min_age = 0.0;
TreeUtilities::getOldestTip(&tau, node, min_age);
// draw new ages and compute the hastings ratio at the same time
double my_new_age = min_age + (parent_age - min_age) * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
if (min_age != 0.0)
{
for (size_t i = 0; i < tau.getNumberOfTips(); i++)
{
if (tau.getNode(i).getAge() < 0.0) {
return RbConstants::Double::neginf;
}
}
}
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例8: recursiveLnProb
double MultivariateBrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
double lnProb = 0.0;
size_t index = from.getIndex();
std::vector<double> val = (*value)[index];
if (! from.isRoot()) {
if (1) {
// if (dirtyNodes[index]) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
std::vector<double> upval = (*value)[upindex];
const MatrixReal& om = sigma->getValue().getInverse();
double s2 = 0;
for (size_t i = 0; i < getDim(); i++) {
double tmp = 0;
for (size_t j = 0; j < getDim(); j++) {
tmp += om[i][j] * (val[j] - upval[j]);
}
s2 += (val[i] - upval[i]) * tmp;
}
double logprob = 0;
logprob -= 0.5 * s2 / from.getBranchLength();
logprob -= 0.5 * (sigma->getValue().getLogDet() + sigma->getValue().getDim() * log(from.getBranchLength()));
nodeLogProbs[index] = logprob;
dirtyNodes[index] = false;
}
lnProb += nodeLogProbs[index];
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
lnProb += recursiveLnProb(from.getChild(i));
}
return lnProb;
}
示例9: calculateTransitionProbabilities
void RateMap_Biogeography::calculateTransitionProbabilities(const TopologyNode& node, TransitionProbabilityMatrix &P) const
{
double branchLength = node.getBranchLength();
double r = ( branchHeterogeneousClockRates ? heterogeneousClockRates[node.getIndex()] : homogeneousClockRate );
const std::vector<double>& glr = ( branchHeterogeneousGainLossRates ? heterogeneousGainLossRates[node.getIndex()] : homogeneousGainLossRates );
if (node.isRoot())
branchLength = 1e10;
double expPart = exp( -(glr[0] + glr[1]) * r * branchLength);
double p = glr[0] / (glr[0] + glr[1]);
double q = 1.0 - p;
P[0][0] = p + q * expPart;
P[0][1] = q - q * expPart;
P[1][0] = p - p * expPart;
P[1][1] = q + p * expPart;
}
示例10: survivors
/**
* Compute the diversity of the tree at time t.
*
* \param[in] t time at which we want to know the diversity.
*
* \return The diversity (number of species in the reconstructed tree).
*/
int PiecewiseConstantSerialSampledBirthDeathProcess::survivors(double t) const
{
const std::vector<TopologyNode*>& nodes = value->getNodes();
int survivors = 0;
for (std::vector<TopologyNode*>::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
{
TopologyNode* n = *it;
if ( n->getAge() < t )
{
if ( n->isRoot() || n->getParent().getAge() > t )
{
survivors++;
}
}
}
return survivors;
}
示例11: performSimpleMove
/** Perform the move */
double SubtreeScale::performSimpleMove( void ) {
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = parent_age * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例12: doProposal
/**
* Perform the proposal.
*
* A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Uniform(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double NodeTimeSlideUniformProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = variable->getValue();
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;
// set the age
tau.getNode(node->getIndex()).setAge( my_new_age );
return 0.0;
}
示例13: recursiveLnProb
double PhyloWhiteNoiseProcess::recursiveLnProb(const TopologyNode &from) {
double lnProb = 0.0;
if (! from.isRoot()) {
// compute the variance
double mean = 1.0;
double stdev = sigma->getValue() / sqrt(from.getBranchLength());
double alpha = mean * mean / (stdev * stdev);
double beta = mean / (stdev * stdev);
double v = (*value)[from.getIndex()];
lnProb += log( RbStatistics::Gamma::lnPdf(alpha,beta,v) );
}
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
const TopologyNode& child = from.getChild(i);
lnProb += recursiveLnProb(child);
}
return lnProb;
}
示例14: performCompoundMove
/** Perform the move */
double RateAgeACLNMixingMove::performCompoundMove( void ) {
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = tree->getValue();
std::vector<double>& nrates = rates->getValue();
double &rootR = rootRate->getValue();
size_t nn = tau.getNumberOfNodes();
double u = rng->uniform01();
double c = exp( epsilon * (u - 0.5) );
for(size_t i=0; i<nn; i++){
TopologyNode* node = &tau.getNode(i);
if(node->isTip() == false){
double curAge = node->getAge();
double newAge = curAge * c;
tau.setAge( node->getIndex(), newAge );
if(node->isRoot()){
storedRootAge = curAge;
}
}
}
size_t nr = nrates.size();
rootR = rootR / c;
for(size_t i=0; i<nrates.size(); i++){
double curRt = nrates[i];
double newRt = curRt / c;
nrates[i] = newRt;
}
storedC = c;
double pr = (((double)nn) - (double)nr) * log(c);
return pr;
}
示例15: performSimpleMove
/** Perform the move */
double GibbsPruneAndRegraft::performSimpleMove( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// potential affected nodes for likelihood computation
std::set<DagNode *> affected;
variable->getAffectedNodes( affected );
double backwardLikelihood = variable->getLnProbability();
for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it)
{
backwardLikelihood += (*it)->getLnProbability();
}
int offset = (int) -backwardLikelihood;
double backward = exp(backwardLikelihood + offset);
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->getParent().isRoot() );
TopologyNode* parent = &node->getParent();
TopologyNode& grandparent = parent->getParent();
TopologyNode& brother = parent->getChild( 0 );
// check if we got the correct child
if ( &brother == node )
{
brother = parent->getChild( 1 );
}
// collect the possible reattachement points
std::vector<TopologyNode*> new_brothers;
findNewBrothers(new_brothers, *parent, &tau.getRoot());
std::vector<double> weights = std::vector<double>(new_brothers.size(), 0.0);
double sumOfWeights = 0.0;
for (size_t i = 0; i<new_brothers.size(); ++i)
{
// get the new brother
TopologyNode* newBro = new_brothers[i];
// do the proposal
TopologyNode *newGrandparent = pruneAndRegraft(&brother, newBro, parent, grandparent);
// flag for likelihood recomputation
variable->touch();
// compute the likelihood of the new value
double priorRatio = variable->getLnProbability();
double likelihoodRatio = 0.0;
for (std::set<DagNode*>::const_iterator it = affected.begin(); it != affected.end(); ++it)
{
likelihoodRatio += (*it)->getLnProbability();
}
weights[i] = exp(priorRatio + likelihoodRatio + offset);
sumOfWeights += weights[i];
// undo proposal
pruneAndRegraft(newBro, &brother, parent, *newGrandparent);
// restore the previous likelihoods;
variable->restore();
}
if (sumOfWeights <= 1E-100) {
// hack
// the proposals have such a small likelihood that they can be neglected
// throw new OperatorFailedException("Couldn't find another proposal with a decent likelihood.");
return 0.0;
}
double ran = rng->uniform01() * sumOfWeights;
size_t index = 0;
while (ran > 0.0) {
ran -= weights[index];
index++;
}
index--;
TopologyNode* newBro = new_brothers[index];
// now we store all necessary values
storedBrother = &brother;
storedNewBrother = newBro;
pruneAndRegraft(&brother, newBro, parent, grandparent);
double forward = weights[index];
double forwardProb = (forward / sumOfWeights);
double backwardProb = (backward / (sumOfWeights - forward + backward));
double hastingsRatio = log(backwardProb / forwardProb);
//.........这里部分代码省略.........