本文整理汇总了C++中TopologyNode::getParent方法的典型用法代码示例。如果您正苦于以下问题:C++ TopologyNode::getParent方法的具体用法?C++ TopologyNode::getParent怎么用?C++ TopologyNode::getParent使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TopologyNode
的用法示例。
在下文中一共展示了TopologyNode::getParent方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
std::set<TopologyNode*> SpeciesNarrowExchangeProposal::getOldestSubtreesNodesInPopulation( Tree &tau, TopologyNode &n )
{
// I need all the oldest nodes/subtrees that have the same tips.
// Those nodes need to be scaled too.
// get the beginning and ending age of the population
double max_age = -1.0;
if ( n.isRoot() == false )
{
max_age = n.getParent().getAge();
}
// get all the taxa from the species tree that are descendants of node i
std::vector<TopologyNode*> species_taxa;
TreeUtilities::getTaxaInSubtree( &n, species_taxa );
// get all the individuals
std::set<TopologyNode*> individualTaxa;
for (size_t i = 0; i < species_taxa.size(); ++i)
{
const std::string &name = species_taxa[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa.insert( ind[j] );
}
}
// create the set of the nodes within this population
std::set<TopologyNode*> nodesInPopulationSet;
// now go through all nodes in the gene
while ( individualTaxa.empty() == false )
{
std::set<TopologyNode*>::iterator it = individualTaxa.begin();
individualTaxa.erase( it );
TopologyNode *geneNode = *it;
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
{
// push the parent to our current list
individualTaxa.insert( &geneNode->getParent() );
}
else if ( geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
}
return nodesInPopulationSet;
}
示例2: recursiveSimulate
void MultivariateBrownianPhyloProcess::recursiveSimulate(const TopologyNode& from) {
size_t index = from.getIndex();
if (from.isRoot()) {
std::vector<double>& val = (*value)[index];
for (size_t i=0; i<getDim(); i++) {
val[i] = 0;
}
}
else {
// x ~ normal(x_up, sigma^2 * branchLength)
std::vector<double>& val = (*value)[index];
sigma->getValue().drawNormalSampleCovariance((*value)[index]);
size_t upindex = from.getParent().getIndex();
std::vector<double>& upval = (*value)[upindex];
for (size_t i=0; i<getDim(); i++) {
val[i] += upval[i];
}
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveSimulate(from.getChild(i));
}
}
示例3: recursivelyFlagNodeDirty
void PhyloBrownianProcessREML::recursivelyFlagNodeDirty( const TopologyNode &n )
{
// we need to flag this node and all ancestral nodes for recomputation
size_t index = n.getIndex();
// if this node is already dirty, the also all the ancestral nodes must have been flagged as dirty
if ( !dirtyNodes[index] )
{
// the root doesn't have an ancestor
if ( !n.isRoot() )
{
recursivelyFlagNodeDirty( n.getParent() );
}
// set the flag
dirtyNodes[index] = true;
// if we previously haven't touched this node, then we need to change the active likelihood pointer
if ( changedNodes[index] == false )
{
activeLikelihood[index] = (activeLikelihood[index] == 0 ? 1 : 0);
changedNodes[index] = true;
}
}
}
示例4: recursiveLnProb
double BrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
double lnProb = 0.0;
size_t index = from.getIndex();
double val = (*value)[index];
if (! from.isRoot()) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
double standDev = sigma->getValue() * sqrt(from.getBranchLength());
double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
lnProb += RbStatistics::Normal::lnPdf(val, standDev, mean);
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
lnProb += recursiveLnProb(from.getChild(i));
}
return lnProb;
}
示例5: recursiveSimulate
void BrownianPhyloProcess::recursiveSimulate(const TopologyNode& from) {
size_t index = from.getIndex();
if (! from.isRoot()) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
double standDev = sigma->getValue() * sqrt(from.getBranchLength());
double mean = (*value)[upindex] + drift->getValue() * from.getBranchLength();
// simulate the new Val
RandomNumberGenerator* rng = GLOBAL_RNG;
(*value)[index] = RbStatistics::Normal::rv( mean, standDev, *rng);
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
recursiveSimulate(from.getChild(i));
}
}
示例6: recursiveSimulate
void AutocorrelatedBranchMatrixDistribution::recursiveSimulate(const TopologyNode& node, RbVector< RateMatrix > *values, const std::vector< double > &scaledParent) {
// get the index
size_t nodeIndex = node.getIndex();
// first we simulate our value
RandomNumberGenerator* rng = GLOBAL_RNG;
// do we keep our parents values?
double u = rng->uniform01();
if ( u < changeProbability->getValue() ) {
// change
// draw a new value for the base frequencies
std::vector<double> newParent = RbStatistics::Dirichlet::rv(scaledParent, *rng);
std::vector<double> newScaledParent = newParent;
// compute the new scaled parent
std::vector<double>::iterator end = newScaledParent.end();
for (std::vector<double>::iterator it = newScaledParent.begin(); it != end; ++it) {
(*it) *= alpha->getValue();
}
RateMatrix_GTR rm = RateMatrix_GTR( newParent.size() );
RbPhylogenetics::Gtr::computeRateMatrix( exchangeabilityRates->getValue(), newParent, &rm );
uniqueBaseFrequencies.push_back( newParent );
uniqueMatrices.push_back( rm );
matrixIndex[nodeIndex] = uniqueMatrices.size()-1;
values->insert(nodeIndex, rm);
size_t numChildren = node.getNumberOfChildren();
if ( numChildren > 0 ) {
for (size_t i = 0; i < numChildren; ++i) {
const TopologyNode& child = node.getChild(i);
recursiveSimulate(child,values,newScaledParent);
}
}
}
else {
// no change
size_t parentIndex = node.getParent().getIndex();
values->insert(nodeIndex, uniqueMatrices[ matrixIndex[ parentIndex ] ]);
size_t numChildren = node.getNumberOfChildren();
if ( numChildren > 0 ) {
for (size_t i = 0; i < numChildren; ++i) {
const TopologyNode& child = node.getChild(i);
recursiveSimulate(child,values,scaledParent);
}
}
}
}
示例7: doProposal
/**
* Perform the proposal.
*
* A Beta-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Beta(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double SubtreeScaleProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// lower bound
double min_age = 0.0;
TreeUtilities::getOldestTip(&tau, node, min_age);
// draw new ages and compute the hastings ratio at the same time
double my_new_age = min_age + (parent_age - min_age) * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
if (min_age != 0.0)
{
for (size_t i = 0; i < tau.getNumberOfTips(); i++)
{
if (tau.getNode(i).getAge() < 0.0) {
return RbConstants::Double::neginf;
}
}
}
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例8: recursiveLnProb
double MultivariateBrownianPhyloProcess::recursiveLnProb( const TopologyNode& from ) {
double lnProb = 0.0;
size_t index = from.getIndex();
std::vector<double> val = (*value)[index];
if (! from.isRoot()) {
if (1) {
// if (dirtyNodes[index]) {
// x ~ normal(x_up, sigma^2 * branchLength)
size_t upindex = from.getParent().getIndex();
std::vector<double> upval = (*value)[upindex];
const MatrixReal& om = sigma->getValue().getInverse();
double s2 = 0;
for (size_t i = 0; i < getDim(); i++) {
double tmp = 0;
for (size_t j = 0; j < getDim(); j++) {
tmp += om[i][j] * (val[j] - upval[j]);
}
s2 += (val[i] - upval[i]) * tmp;
}
double logprob = 0;
logprob -= 0.5 * s2 / from.getBranchLength();
logprob -= 0.5 * (sigma->getValue().getLogDet() + sigma->getValue().getDim() * log(from.getBranchLength()));
nodeLogProbs[index] = logprob;
dirtyNodes[index] = false;
}
lnProb += nodeLogProbs[index];
}
// propagate forward
size_t numChildren = from.getNumberOfChildren();
for (size_t i = 0; i < numChildren; ++i) {
lnProb += recursiveLnProb(from.getChild(i));
}
return lnProb;
}
示例9: survivors
/**
* Compute the diversity of the tree at time t.
*
* \param[in] t time at which we want to know the diversity.
*
* \return The diversity (number of species in the reconstructed tree).
*/
int PiecewiseConstantSerialSampledBirthDeathProcess::survivors(double t) const
{
const std::vector<TopologyNode*>& nodes = value->getNodes();
int survivors = 0;
for (std::vector<TopologyNode*>::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
{
TopologyNode* n = *it;
if ( n->getAge() < t )
{
if ( n->isRoot() || n->getParent().getAge() > t )
{
survivors++;
}
}
}
return survivors;
}
示例10: performSimpleMove
/** Perform the move */
double SubtreeScale::performSimpleMove( void ) {
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = variable->getValue();
// pick a random node which is not the root and neither the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = parent_age * rng->uniform01();
double scalingFactor = my_new_age / my_age;
size_t nNodes = node->getNumberOfNodesInSubtree(false);
// rescale the subtrees
TreeUtilities::rescaleSubtree(&tau, node, scalingFactor );
// compute the Hastings ratio
double lnHastingsratio = (nNodes > 1 ? log( scalingFactor ) * (nNodes-1) : 0.0 );
return lnHastingsratio;
}
示例11: doProposal
/**
* Perform the proposal.
*
* A Uniform-simplex proposal randomly changes some values of a simplex, although the other values
* change too because of the renormalization.
* First, some random indices are drawn. Then, the proposal draws a new somplex
* u ~ Uniform(val[index] * alpha)
* where alpha is the tuning parameter.The new value is set to u.
* The simplex is then renormalized.
*
* \return The hastings ratio.
*/
double NodeTimeSlideUniformProposal::doProposal( void )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = variable->getValue();
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
// draw new ages and compute the hastings ratio at the same time
double my_new_age = (parent_age-child_Age) * rng->uniform01() + child_Age;
// set the age
tau.getNode(node->getIndex()).setAge( my_new_age );
return 0.0;
}
示例12: while
std::vector<TopologyNode*> TreeNodeAgeUpdateProposal::getNodesInPopulation( Tree &tau, TopologyNode &n )
{
// I need all the oldest nodes/subtrees that have the same tips.
// Those nodes need to be scaled too.
// get the beginning and ending age of the population
double max_age = -1.0;
if ( n.isRoot() == false )
{
max_age = n.getParent().getAge();
}
// get all the taxa from the species tree that are descendants of node i
double min_age_left = n.getChild(0).getAge();
std::vector<TopologyNode*> speciesTaxa_left;
TreeUtilities::getTaxaInSubtree( &n.getChild(0), speciesTaxa_left );
// get all the individuals
std::set<TopologyNode*> individualTaxa_left;
for (size_t i = 0; i < speciesTaxa_left.size(); ++i)
{
const std::string &name = speciesTaxa_left[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa_left.insert( ind[j] );
}
}
// create the set of the nodes within this population
std::set<TopologyNode*> nodesInPopulationSet;
// now go through all nodes in the gene
while ( individualTaxa_left.empty() == false )
{
// get the first element
std::set<TopologyNode*>::iterator it = individualTaxa_left.begin();
// store the pointer
TopologyNode *geneNode = *it;
// and now remove the element from the list
individualTaxa_left.erase( it );
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->getAge() > min_age_left && geneNode->getAge() < max_age && geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
if ( geneNode->isRoot() == false && ( max_age == -1.0 || max_age > geneNode->getParent().getAge() ) )
{
// push the parent to our current list
individualTaxa_left.insert( &geneNode->getParent() );
}
}
// get all the taxa from the species tree that are descendants of node i
double min_age_right = n.getChild(1).getAge();
std::vector<TopologyNode*> speciesTaxa_right;
TreeUtilities::getTaxaInSubtree( &n.getChild(1), speciesTaxa_right );
// get all the individuals
std::set<TopologyNode*> individualTaxa_right;
for (size_t i = 0; i < speciesTaxa_right.size(); ++i)
{
const std::string &name = speciesTaxa_right[i]->getName();
std::vector<TopologyNode*> ind = tau.getTipNodesWithSpeciesName( name );
for (size_t j = 0; j < ind.size(); ++j)
{
individualTaxa_right.insert( ind[j] );
}
}
// now go through all nodes in the gene
while ( individualTaxa_right.empty() == false )
{
// get the first element
std::set<TopologyNode*>::iterator it = individualTaxa_right.begin();
// store the pointer
TopologyNode *geneNode = *it;
// and now remove the element from the list
individualTaxa_right.erase( it );
// add this node to our list of node we need to scale, if:
// a) this is the root node
// b) this is not the root and the age of the parent node is larger than the parent's age of the species node
if ( geneNode->getAge() > min_age_right && geneNode->getAge() < max_age && geneNode->isTip() == false )
{
// add this node if it is within the age of our population
nodesInPopulationSet.insert( geneNode );
}
//.........这里部分代码省略.........
示例13: performMcmcMove
/** Perform the move */
void RateAgeBetaShift::performMcmcMove( double lHeat, double pHeat )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = tree->getValue();
RbOrderedSet<DagNode*> affected;
tree->getAffectedNodes( affected );
double oldLnLike = 0.0;
bool checkLikelihoodShortcuts = rng->uniform01() < 0.001;
if ( checkLikelihoodShortcuts == true )
{
for (RbOrderedSet<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
{
(*it)->touch();
oldLnLike += (*it)->getLnProbability();
}
}
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
size_t nodeIdx = 0;
do {
double u = rng->uniform01();
nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(nodeIdx);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
storedRates[nodeIdx] = rates[nodeIdx]->getValue();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
storedRates[childIdx] = rates[childIdx]->getValue();
}
// draw new ages and compute the hastings ratio at the same time
double m = (my_age-child_Age) / (parent_age-child_Age);
double a = delta * m + 1.0;
double b = delta * (1.0-m) + 1.0;
double new_m = RbStatistics::Beta::rv(a, b, *rng);
double my_new_age = (parent_age-child_Age) * new_m + child_Age;
// compute the Hastings ratio
double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
double new_a = delta * new_m + 1.0;
double new_b = delta * (1.0-new_m) + 1.0;
double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
// set the age
tau.getNode(nodeIdx).setAge( my_new_age );
// touch the tree so that the likelihoods are getting stored
tree->touch();
// get the probability ratio of the tree
double treeProbRatio = tree->getLnProbabilityRatio();
// set the rates
double pa = node->getParent().getAge();
double my_new_rate =(pa - my_age) * storedRates[nodeIdx] / (pa - my_new_age);
// now we set the new value
// this will automcatically call a touch
rates[nodeIdx]->setValue( new double( my_new_rate ) );
// get the probability ratio of the new rate
double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
double a = node->getChild(i).getAge();
double child_new_rate = (my_age - a) * storedRates[childIdx] / (my_new_age - a);
// now we set the new value
// this will automcatically call a touch
rates[childIdx]->setValue( new double( child_new_rate ) );
// get the probability ratio of the new rate
//.........这里部分代码省略.........
示例14: doProposal
/**
* Perform the proposal.
*
* \return The hastings ratio.
*/
double SpeciesNarrowExchangeProposal::doProposal( void )
{
// empty the previous vectors
storedGeneTreeNodes.clear();
storedOldBrothers.clear();
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
Tree& tau = speciesTree->getValue();
// pick a random node which is not the root and neithor a direct descendant of the root
TopologyNode* node;
do {
double u = rng->uniform01();
size_t index = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(index);
} while ( node->isRoot() || node->getParent().isRoot() );
TopologyNode& parent = node->getParent();
TopologyNode& grandparent = parent.getParent();
TopologyNode* uncle = &grandparent.getChild( 0 );
// check if we got the correct child
if ( uncle == &parent )
{
uncle = &grandparent.getChild( 1 );
}
TopologyNode* brother = &parent.getChild( 0 );
// check if we got the correct child
if ( brother == node )
{
brother = &parent.getChild( 1 );
}
// we need to work with the times
double parent_age = parent.getAge();
double uncles_age = uncle->getAge();
if( uncles_age < parent_age )
{
failed = false;
double lnHastingsRatio = 0.0;
// now we store all necessary values
storedChoosenNode = node;
storedUncle = uncle;
// now we need to find for each gene tree the nodes that need to be moved as well
// only nodes that have a coalescent event within the lifetime of the parents populations
// from lineages belonging to the chosen node with lineages belonging to the brother population
// need to be changed
for ( size_t i=0; i<geneTrees.size(); ++i )
{
// get the i-th gene tree
Tree& geneTree = geneTrees[i]->getValue();
std::vector<TopologyNode*> nodes = getNodesToChange(geneTree, *node, *brother );
// get the set of nodes in my uncles populations
// these are the nodes that are possible re-attachment points
std::set<TopologyNode*> new_siblings = getOldestSubtreesNodesInPopulation(geneTree, *uncle);
std::set<TopologyNode*> old_siblings = getOldestSubtreesNodesInPopulation(geneTree, *brother);
for (size_t j=0; j<nodes.size(); ++j)
{
TopologyNode *the_gene_node = nodes[i];
// first we need to compute the backward probability
std::set<TopologyNode*> old_candidate_siblings = getPossibleSiblings(the_gene_node, old_siblings);
// add the backward probability to the hastings ratio
lnHastingsRatio += log( old_siblings.size() );
// then we need to compute the forward probability
std::set<TopologyNode*> new_candidate_siblings = getPossibleSiblings(the_gene_node, new_siblings);
// add the forward probability to the hastings ratio
lnHastingsRatio += log( new_candidate_siblings.size() );
// actually pick a new sibling
size_t new_index = size_t( floor(rng->uniform01() * new_candidate_siblings.size() ) );
std::set<TopologyNode*>::iterator it = new_candidate_siblings.begin();
std::advance(it,new_index);
TopologyNode *new_child = *it;
// store nodes
storedGeneTreeNodes.push_back( the_gene_node );
TopologyNode &the_parent = the_gene_node->getParent();
TopologyNode *old_brother = &the_parent.getChild( 0 );
if ( old_brother == the_gene_node )
{
old_brother = &the_parent.getChild( 1 );
//.........这里部分代码省略.........
示例15: performMove
/** Perform the move */
void RateAgeBetaShift::performMove( double heat, bool raiseLikelihoodOnly )
{
// Get random number generator
RandomNumberGenerator* rng = GLOBAL_RNG;
TimeTree& tau = tree->getValue();
// pick a random node which is not the root and neithor the direct descendant of the root
TopologyNode* node;
size_t nodeIdx = 0;
do {
double u = rng->uniform01();
nodeIdx = size_t( std::floor(tau.getNumberOfNodes() * u) );
node = &tau.getNode(nodeIdx);
} while ( node->isRoot() || node->isTip() );
TopologyNode& parent = node->getParent();
// we need to work with the times
double parent_age = parent.getAge();
double my_age = node->getAge();
double child_Age = node->getChild( 0 ).getAge();
if ( child_Age < node->getChild( 1 ).getAge())
{
child_Age = node->getChild( 1 ).getAge();
}
// now we store all necessary values
storedNode = node;
storedAge = my_age;
storedRates[nodeIdx] = rates[nodeIdx]->getValue();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
storedRates[childIdx] = rates[childIdx]->getValue();
}
// draw new ages and compute the hastings ratio at the same time
double m = (my_age-child_Age) / (parent_age-child_Age);
double a = delta * m + 1.0;
double b = delta * (1.0-m) + 1.0;
double new_m = RbStatistics::Beta::rv(a, b, *rng);
double my_new_age = (parent_age-child_Age) * new_m + child_Age;
// compute the Hastings ratio
double forward = RbStatistics::Beta::lnPdf(a, b, new_m);
double new_a = delta * new_m + 1.0;
double new_b = delta * (1.0-new_m) + 1.0;
double backward = RbStatistics::Beta::lnPdf(new_a, new_b, m);
// set the age
tau.setAge( node->getIndex(), my_new_age );
tree->touch();
double treeProbRatio = tree->getLnProbabilityRatio();
// set the rates
rates[nodeIdx]->setValue( new double((node->getParent().getAge() - my_age) * storedRates[nodeIdx] / (node->getParent().getAge() - my_new_age)));
double ratesProbRatio = rates[nodeIdx]->getLnProbabilityRatio();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
rates[childIdx]->setValue( new double((my_age - node->getChild(i).getAge()) * storedRates[childIdx] / (my_new_age - node->getChild(i).getAge())));
ratesProbRatio += rates[childIdx]->getLnProbabilityRatio();
}
std::set<DagNode*> affected;
tree->getAffectedNodes( affected );
double lnProbRatio = 0;
for (std::set<DagNode*>::iterator it = affected.begin(); it != affected.end(); ++it)
{
(*it)->touch();
lnProbRatio += (*it)->getLnProbabilityRatio();
}
if ( fabs(lnProbRatio) > 1E-6 ) {
// throw RbException("Likelihood shortcut computation failed in rate-age-proposal.");
std::cout << "Likelihood shortcut computation failed in rate-age-proposal." << std::endl;
}
double hastingsRatio = backward - forward;
double lnAcceptanceRatio = treeProbRatio + ratesProbRatio + hastingsRatio;
if (lnAcceptanceRatio >= 0.0)
{
numAccepted++;
tree->keep();
rates[nodeIdx]->keep();
for (size_t i = 0; i < node->getNumberOfChildren(); i++)
{
size_t childIdx = node->getChild(i).getIndex();
//.........这里部分代码省略.........