当前位置: 首页>>代码示例>>C++>>正文


C++ Timing::stop方法代码示例

本文整理汇总了C++中Timing::stop方法的典型用法代码示例。如果您正苦于以下问题:C++ Timing::stop方法的具体用法?C++ Timing::stop怎么用?C++ Timing::stop使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Timing的用法示例。


在下文中一共展示了Timing::stop方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main()
{
	/******************************* [ signal ] ******************************/
	Type a = 0;
	Type b = Ls-1;
	Vector<Type> t = linspace(a,b,Ls) / Type(Fs);
	Vector<Type> s = sin( Type(400*PI) * pow(t,Type(2.0)) );

	/******************************** [ widow ] ******************************/
	a = 0;
	b = Type(Lg-1);
	Type u = (Lg-1)/Type(2);
	Type r = Lg/Type(8);
	t = linspace(a,b,Lg);
	Vector<Type> g = gauss(t,u,r);
	g = g/norm(g);

	/********************************* [ WFT ] *******************************/
	Type runtime = 0;
	Timing cnt;
	cout << "Taking windowed Fourier transform." << endl;
	cnt.start();
    Matrix< complex<Type> > coefs = wft( s, g );
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	/******************************** [ IWFT ] *******************************/
	cout << "Taking inverse windowed Fourier transform." << endl;
	cnt.start();
	Vector<Type> x = iwft( coefs, g );
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	cout << "The relative error is : " << "norm(s-x) / norm(s) = "
		 << norm(s-x)/norm(s) << endl << endl;

	return 0;
}
开发者ID:Holdlen2DH,项目名称:tspl,代码行数:40,代码来源:wft_test.cpp

示例2: setOutputMatrixToAlgebraDefault

void setOutputMatrixToAlgebraDefault(float_tt* dst, size_t numVal, log4cxx::LoggerPtr logger) {
    Timing timer;
    valsSet(dst, ::nan(""), numVal); // ScaLAPACK algorithm should provide all entries in matrix
    LOG4CXX_DEBUG(SCALAPACKPHYSICAL_HPP_logger, "setOutputMatrixToAlgebraDefault took " << timer.stop());
}
开发者ID:Goon83,项目名称:scidb,代码行数:5,代码来源:ScaLAPACKPhysical.hpp

示例3: setInputMatrixToAlgebraDefault

void setInputMatrixToAlgebraDefault(float_tt* dst, size_t numVal) {
    Timing timer;
    memset(dst, 0, sizeof(float_tt) * numVal); // empty cells are implicit zeros for sparse matrices

    enum dummy {DBG_DENSE_ALGEBRA_WITH_NAN_FILL=0};  // won't be correct if empty cells present
    if(DBG_DENSE_ALGEBRA_WITH_NAN_FILL) {
        valsSet(dst, ::nan(""), numVal); // any non-signalling nan will do
        LOG4CXX_WARN(SCALAPACKPHYSICAL_HPP_logger, "@@@@@@@@@@@@@ WARNING: prefill matrix memory with NaN for debug");
    }
    LOG4CXX_DEBUG(SCALAPACKPHYSICAL_HPP_logger, "setInputMatrixToAlgebraDefault took " << timer.stop());
}
开发者ID:Goon83,项目名称:scidb,代码行数:11,代码来源:ScaLAPACKPhysical.hpp

示例4: main

int main()
{

	/******************************* [ signal ] ******************************/
	Vector<double> t = linspace( 0.0, (Ls-1)/fs, Ls );
	Vector<double> st = sin( 200*PI*pow(t,2.0) );
	st = st-mean(st);

	/******************************** [ CWT ] ********************************/
	Matrix< complex<double> > coefs;
	CWT<double> wavelet("morlet");
	wavelet.setScales( fs, fs/Ls, fs/2 );
	Timing cnt;
	double runtime = 0.0;
	cout << "Taking continuous wavelet transform(Morlet)." << endl;
	cnt.start();
	coefs = wavelet.cwtC(st);
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	/******************************** [ ICWT ] *******************************/
	cout << "Taking inverse continuous wavelet transform." << endl;
	cnt.start();
	Vector<double> xt = wavelet.icwtC(coefs);
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	cout << "The relative error is : " << endl;
	cout << "norm(st-xt) / norm(st) = " << norm(st-xt)/norm(st) << endl;
	cout << endl << endl;


    /******************************* [ signal ] ******************************/
    Vector<float> tf = linspace( float(0.0), (Ls-1)/float(fs), Ls );
	Vector<float> stf = sin( float(200*PI) * pow(tf,float(2.0) ) );
	stf = stf-mean(stf);

	/******************************** [ CWT ] ********************************/
	CWT<float> waveletf("mexiHat");
	waveletf.setScales( float(fs), float(fs/Ls), float(fs/2), float(0.25) );
	runtime = 0.0;
	cout << "Taking continuous wavelet transform(Mexican Hat)." << endl;
	cnt.start();
	Matrix<float> coefsf = waveletf.cwtR(stf);
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	/******************************** [ ICWT ] *******************************/
	cout << "Taking inverse continuous wavelet transform." << endl;
	cnt.start();
	Vector<float> xtf = waveletf.icwtR(coefsf);
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (ms)" << endl << endl;

	cout << "The relative error is : " << endl;
	cout << "norm(st-xt) / norm(st) = " << norm(stf-xtf)/norm(stf) << endl << endl;

	return 0;
}
开发者ID:Holdlen2DH,项目名称:tspl,代码行数:63,代码来源:cwt_test.cpp

示例5: main

void main(void)
{
	int i, k;
	Timing watch;
	Point3D mid, ext;

	float cubeHalfSide = 100.0f; 
	float minSphereRadius; 
	float minHalfBoxExtent; 
	float maxSphereRadius;  
	float maxHalfBoxExtent; 

	// Note: Change the value of 'testCase' in [0, 4] to vary 
	// the number of overlaps in the generated test data.
	int testCase = 0;

	switch (testCase) {
		case 0:
			minSphereRadius = 1.0f;
			minHalfBoxExtent = 1.0f;
			maxSphereRadius = 32.5f;
			maxHalfBoxExtent = 32.5f;
			break;
		case 1:
			minSphereRadius = 1.0f;
			minHalfBoxExtent = 1.0f;			
			maxSphereRadius = 55.0f;
			maxHalfBoxExtent = 55.0f;
			break;
		case 2:
			minSphereRadius = 1.0f;
			minHalfBoxExtent = 1.0f;
			maxSphereRadius = 77.5f;
			maxHalfBoxExtent = 77.5f;
			break;
		case 3:
			minSphereRadius = 13.5f;
			minHalfBoxExtent = 13.5f;
			maxSphereRadius = 85.0f;
			maxHalfBoxExtent = 85.0f;
			break;
		case 4:
			minSphereRadius = 28.0f;
			minHalfBoxExtent = 28.0f;
			maxSphereRadius = 99.0f;
			maxHalfBoxExtent = 99.0f;
			break;
		default:
			minSphereRadius = 1.0f;
			minHalfBoxExtent = 1.0f;
			maxSphereRadius = 10.0f;
			maxHalfBoxExtent = 10.0f;
	}

	for (i = 0; i < NUMBER_OF_BV_PAIRS; i++) {
		sphereArray[i].r = getRandomScalar(minSphereRadius, maxSphereRadius);
		
		sphereArray[i].c.x = getRandomScalar(-cubeHalfSide + sphereArray[i].r, cubeHalfSide - sphereArray[i].r);
		sphereArray[i].c.y = getRandomScalar(-cubeHalfSide + sphereArray[i].r, cubeHalfSide - sphereArray[i].r);
		sphereArray[i].c.z = getRandomScalar(-cubeHalfSide + sphereArray[i].r, cubeHalfSide - sphereArray[i].r);
		
		ext.x = getRandomScalar(minHalfBoxExtent, maxHalfBoxExtent);
		ext.y = getRandomScalar(minHalfBoxExtent, maxHalfBoxExtent);
		ext.z = getRandomScalar(minHalfBoxExtent, maxHalfBoxExtent);
		
		mid.x = getRandomScalar(-cubeHalfSide + ext.x, cubeHalfSide - ext.x);
		mid.y = getRandomScalar(-cubeHalfSide + ext.y, cubeHalfSide - ext.y);
		mid.z = getRandomScalar(-cubeHalfSide + ext.z, cubeHalfSide - ext.z);

		boxArray[i].min.x = mid.x - ext.x;
		boxArray[i].min.y = mid.y - ext.y;
		boxArray[i].min.z = mid.z - ext.z;
		boxArray[i].max.x = mid.x + ext.x;
		boxArray[i].max.y = mid.y + ext.y;
		boxArray[i].max.z = mid.z + ext.z;
	}

	/* ==== Method 1 ==== */
	noOverlaps[0] = 0;
	watch.start();
	for (k=0; k < REPETITIONS; k++) {		
		for (i = 0; i < NUMBER_OF_BV_PAIRS; i++) {
			noOverlaps[0] += overlapSphereAABB_Arvo(sphereArray[i], boxArray[i]);
		}
	}
	time[0] = watch.stop() / REPETITIONS;
	noOverlaps[0] /= REPETITIONS;
	printResult(algorithmName[0], noOverlaps[0], time[0]);

	/* ==== Method 2 ==== */
	noOverlaps[1] = 0;
	watch.start();
	for (k=0; k < REPETITIONS; k++) {		
		for (i = 0; i < NUMBER_OF_BV_PAIRS; i++) {
			noOverlaps[1] += overlapSphereAABB_QRI(sphereArray[i], boxArray[i]);
		}
	}
	time[1] = watch.stop() / REPETITIONS;
	noOverlaps[1] /= REPETITIONS;
	printResult(algorithmName[1], noOverlaps[1], time[1]);
//.........这里部分代码省略.........
开发者ID:erich666,项目名称:jgt-code,代码行数:101,代码来源:benchmarkOverlapSphereAABB.cpp

示例6: calculateAllCollisions


//.........这里部分代码省略.........
            if (mDetectorDeformManager) {
                // note: once this is called, internal job collections of the
                // DetectorDeformAlgorithm objects will add their jobs to the
                // pipeline - but the _pipeline_ will actually start the jobs
                mDetectorDeformManager->notifyPipelineStarted();
            }

            // add deformable self-collision jobs
            if (mDetectorDeformManager) {
                const std::list<Proxy*>& selfCollisionProxies = mWorld->getSelfcollisionProxies();
                for (std::list<Proxy*>::const_iterator it = selfCollisionProxies.begin(); it != selfCollisionProxies.end(); ++it) {
                    if (!((*it)->getProxyType() & PROXYTYPE_DEFORMABLE)) {
                        continue;
                    }

                    if (mWorld->getUseCollisionCaching()) {
                        bool cacheApplied = mWorld->getCollisionCache()->applyCacheIfAvailable(*it, *it);
                        if (cacheApplied) {
                            continue;
                        }
                    }

                    DetectorDeformAlgorithm* algorithm = mDetectorDeformManager->pickAlgorithmFor(*it, *it);
                    if (algorithm) {
                        CollisionPair pair;

                        // FIXME: make CollisionPair store Proxy pointers, not
                        // BoundingVolume pointers.
                        pair.bvol1 = (*it)->getBvHierarchyNode()->getBoundingVolume();
                        pair.bvol2 = pair.bvol1;
                        algorithm->createCollisionJobFor(pair);
                    }
                }
            }
        }

        if (!getUsePipelining()) {
            completeCurrentPhase();
            time.stop();
            mWorld->getCurrentDebugLogEntry()->addTiming("BroadPhase", time);

            time.restart();
            mCurrentPhase = PHASE_MIDDLEPHASE;
            completeCurrentPhase();
            time.stop();
            mWorld->getCurrentDebugLogEntry()->addTiming("MiddlePhase", time);

            time.restart();
            mCurrentPhase = PHASE_NARROWPHASE;
            completeCurrentPhase();
            time.stop();
            mWorld->getCurrentDebugLogEntry()->addTiming("NarrowPhase", time);
        } else {
            completeCurrentPhase();
            time.stop();

            // in a pipelined run we cannot differ between phases
            // AB: note: "BroadPhase", "MiddlePhase" and "NarrowPhase" timings
            //     can still be retrieved from the log - since we havent added
            //     them, they will be nullified Timing objects.
            mWorld->getCurrentDebugLogEntry()->addTiming("Pipeline", time);
        }

        if (mDetectorDeformManager) {
            // reset the job collections of the algorithms
            // note: at this point all jobs must already be completed!
            mDetectorDeformManager->notifyPipelineCompleted();
        }

        // pipeline has been completed at this point. add results to
        // worldCollisions.
        worldCollisions->setRigidBoundingVolumeCollisions(&mMiddlePhaseRigidResults);
        worldCollisions->addNarrowPhaseCollisions(&mCollisionInfos);

        // post-pipeline algorithms
        time.restart();
        startCompletelyUnthreadedAlgorithms(worldCollisions);
        time.stop();
        mWorld->getCurrentDebugLogEntry()->addTiming("UnthreadedPhase", time);

        mWorld->getCurrentDebugLogEntry()->setUIntVariable("BroadPhase job count", mWorld->getBroadPhase()->getJobCollection()->getJobsInCollectionCount());
        mWorld->getCurrentDebugLogEntry()->setUIntVariable("BroadPhase min collisions per job", mMinCollisionsPerBroadPhaseJob);
        mWorld->getCurrentDebugLogEntry()->setUIntVariable("BroadPhase max collisions per job", mMaxCollisionsPerBroadPhaseJob);
        mWorld->getCurrentDebugLogEntry()->setUIntVariable("BroadPhase collisions", mTotalBroadPhaseCollisions);

        // sanity check
        mWorkerPool->waitForCompletion();
        if (mWorkerPool->hasCompletedJobs()) {
            std::cerr << dc_funcinfo << "ERROR: completed jobs left" << std::endl;
            while (mWorkerPool->hasCompletedJobs()) {
                delete mWorkerPool->retrieveCompletedJob();
            }
        }

        mCurrentPhase = PHASE_INVALID;

        if (!mBroadPhaseJobs->empty() || !mMiddlePhaseJobs->empty() || !mNarrowPhaseJobs->empty()) {
            throw Exception("Pipeline: internal error: not all job lists empty at end of collision detection");
        }
    }
开发者ID:ColinGilbert,项目名称:d-collide,代码行数:101,代码来源:pipeline.cpp


注:本文中的Timing::stop方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。