本文整理汇总了C++中Thread::CalculateExecutionContext方法的典型用法代码示例。如果您正苦于以下问题:C++ Thread::CalculateExecutionContext方法的具体用法?C++ Thread::CalculateExecutionContext怎么用?C++ Thread::CalculateExecutionContext使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Thread
的用法示例。
在下文中一共展示了Thread::CalculateExecutionContext方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: disasm_sp
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range,
Thread& thread,
UnwindPlan& unwind_plan)
{
if (range.GetByteSize() > 0 &&
range.GetBaseAddress().IsValid() &&
m_inst_emulator_ap.get())
{
// The the instruction emulation subclass setup the unwind plan for the
// first instruction.
m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);
// CreateFunctionEntryUnwind should have created the first row. If it
// doesn't, then we are done.
if (unwind_plan.GetRowCount() == 0)
return false;
ExecutionContext exe_ctx;
thread.CalculateExecutionContext(exe_ctx);
DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
NULL,
exe_ctx,
range));
LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (disasm_sp)
{
m_range_ptr = ⦥
m_thread_ptr = &thread;
m_unwind_plan_ptr = &unwind_plan;
const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
const bool show_address = true;
const bool show_bytes = true;
const bool raw = false;
// Initialize the CFA with a known value. In the 32 bit case
// it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
// We use the address byte size to be safe for any future addresss sizes
m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(),
unwind_plan.GetInitialCFARegister(),
m_cfa_reg_info);
m_fp_is_cfa = false;
m_register_values.clear();
m_pushed_regs.clear();
m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
RegisterValue cfa_reg_value;
cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
SetRegisterValue (m_cfa_reg_info, cfa_reg_value);
const InstructionList &inst_list = disasm_sp->GetInstructionList ();
const size_t num_instructions = inst_list.GetSize();
if (num_instructions > 0)
{
Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
const addr_t base_addr = inst->GetAddress().GetFileAddress();
// Initialize the current row with the one row that was created
// from the CreateFunctionEntryUnwind call above...
m_curr_row = unwind_plan.GetLastRow();
for (size_t idx=0; idx<num_instructions; ++idx)
{
inst = inst_list.GetInstructionAtIndex (idx).get();
if (inst)
{
if (log && log->GetVerbose ())
{
StreamString strm;
inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize (), show_address, show_bytes, &exe_ctx, raw);
log->PutCString (strm.GetData());
}
m_inst_emulator_ap->SetInstruction (inst->GetOpcode(),
inst->GetAddress(),
exe_ctx.GetTargetPtr());
m_inst_emulator_ap->EvaluateInstruction (eEmulateInstructionOptionIgnoreConditions);
if (unwind_plan.GetLastRow() != m_curr_row)
{
// Be sure to not edit the offset unless our row has changed
// so that the "!=" call above doesn't trigger every time
m_curr_row.SetOffset (inst->GetAddress().GetFileAddress() + inst->GetOpcode().GetByteSize() - base_addr);
// Append the new row
unwind_plan.AppendRow (m_curr_row);
}
}
}
}
}
if (log && log->GetVerbose ())
{
StreamString strm;
//.........这里部分代码省略.........
示例2: disasm_sp
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range,
Thread& thread,
UnwindPlan& unwind_plan)
{
if (range.GetByteSize() > 0 &&
range.GetBaseAddress().IsValid() &&
m_inst_emulator_ap.get())
{
// The instruction emulation subclass setup the unwind plan for the
// first instruction.
m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);
// CreateFunctionEntryUnwind should have created the first row. If it
// doesn't, then we are done.
if (unwind_plan.GetRowCount() == 0)
return false;
ExecutionContext exe_ctx;
thread.CalculateExecutionContext(exe_ctx);
const bool prefer_file_cache = true;
DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
NULL,
NULL,
exe_ctx,
range,
prefer_file_cache));
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (disasm_sp)
{
m_range_ptr = ⦥
m_thread_ptr = &thread;
m_unwind_plan_ptr = &unwind_plan;
const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
const bool show_address = true;
const bool show_bytes = true;
m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(),
unwind_plan.GetInitialCFARegister(),
m_cfa_reg_info);
m_fp_is_cfa = false;
m_register_values.clear();
m_pushed_regs.clear();
// Initialize the CFA with a known value. In the 32 bit case
// it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
// We use the address byte size to be safe for any future address sizes
m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
RegisterValue cfa_reg_value;
cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
SetRegisterValue (m_cfa_reg_info, cfa_reg_value);
const InstructionList &inst_list = disasm_sp->GetInstructionList ();
const size_t num_instructions = inst_list.GetSize();
if (num_instructions > 0)
{
Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();
// Map for storing the unwind plan row and the value of the registers at a given offset.
// When we see a forward branch we add a new entry to this map with the actual unwind plan
// row and register context for the target address of the branch as the current data have
// to be valid for the target address of the branch too if we are in the same function.
std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>> saved_unwind_states;
// Make a copy of the current instruction Row and save it in m_curr_row
// so we can add updates as we process the instructions.
UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
UnwindPlan::Row *newrow = new UnwindPlan::Row;
if (last_row.get())
*newrow = *last_row.get();
m_curr_row.reset(newrow);
// Add the initial state to the save list with offset 0.
saved_unwind_states.insert({0, {last_row, m_register_values}});
// cache the pc register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
RegisterInfo pc_reg_info;
if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info))
pc_reg_num = pc_reg_info.kinds[unwind_plan.GetRegisterKind()];
else
pc_reg_num = LLDB_INVALID_REGNUM;
// cache the return address register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
uint32_t ra_reg_num = LLDB_INVALID_REGNUM;
RegisterInfo ra_reg_info;
if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info))
ra_reg_num = ra_reg_info.kinds[unwind_plan.GetRegisterKind()];
else
ra_reg_num = LLDB_INVALID_REGNUM;
//.........这里部分代码省略.........
示例3: disasm_sp
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range,
Thread& thread,
UnwindPlan& unwind_plan)
{
if (range.GetByteSize() > 0 &&
range.GetBaseAddress().IsValid() &&
m_inst_emulator_ap.get())
{
// The instruction emulation subclass setup the unwind plan for the
// first instruction.
m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);
// CreateFunctionEntryUnwind should have created the first row. If it
// doesn't, then we are done.
if (unwind_plan.GetRowCount() == 0)
return false;
ExecutionContext exe_ctx;
thread.CalculateExecutionContext(exe_ctx);
const bool prefer_file_cache = true;
DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
NULL,
NULL,
exe_ctx,
range,
prefer_file_cache));
Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
if (disasm_sp)
{
m_range_ptr = ⦥
m_thread_ptr = &thread;
m_unwind_plan_ptr = &unwind_plan;
const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
const bool show_address = true;
const bool show_bytes = true;
m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(),
unwind_plan.GetInitialCFARegister(),
m_cfa_reg_info);
m_fp_is_cfa = false;
m_register_values.clear();
m_pushed_regs.clear();
// Initialize the CFA with a known value. In the 32 bit case
// it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
// We use the address byte size to be safe for any future address sizes
m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
RegisterValue cfa_reg_value;
cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
SetRegisterValue (m_cfa_reg_info, cfa_reg_value);
const InstructionList &inst_list = disasm_sp->GetInstructionList ();
const size_t num_instructions = inst_list.GetSize();
if (num_instructions > 0)
{
Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
const addr_t base_addr = inst->GetAddress().GetFileAddress();
// Make a copy of the current instruction Row and save it in m_curr_row
// so we can add updates as we process the instructions.
UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
UnwindPlan::Row *newrow = new UnwindPlan::Row;
if (last_row.get())
*newrow = *last_row.get();
m_curr_row.reset(newrow);
// Once we've seen the initial prologue instructions complete, save a
// copy of the CFI at that point into prologue_completed_row for possible
// use later.
int instructions_since_last_prologue_insn = 0; // # of insns since last CFI was update
bool reinstate_prologue_next_instruction = false; // Next iteration, re-install the prologue row of CFI
bool last_instruction_restored_return_addr_reg = false; // re-install the prologue row of CFI if the next instruction is a branch immediate
bool return_address_register_has_been_saved = false; // if we've seen the ra register get saved yet
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
// cache the pc register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
RegisterInfo pc_reg_info;
if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info))
pc_reg_num = pc_reg_info.kinds[unwind_plan.GetRegisterKind()];
else
pc_reg_num = LLDB_INVALID_REGNUM;
// cache the return address register number (in whatever register numbering this UnwindPlan uses) for
// quick reference during instruction parsing.
uint32_t ra_reg_num = LLDB_INVALID_REGNUM;
RegisterInfo ra_reg_info;
if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info))
//.........这里部分代码省略.........