本文整理汇总了C++中TerrainBlock::getHeight方法的典型用法代码示例。如果您正苦于以下问题:C++ TerrainBlock::getHeight方法的具体用法?C++ TerrainBlock::getHeight怎么用?C++ TerrainBlock::getHeight使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TerrainBlock
的用法示例。
在下文中一共展示了TerrainBlock::getHeight方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getAltitude
virtual float getAltitude(int x, int y)
{
return fixedToFloat(mBlock->getHeight(x,y));
}
示例2: isOccludedByTerrain
bool SceneCullingState::isOccludedByTerrain( SceneObject* object ) const
{
PROFILE_SCOPE( SceneCullingState_isOccludedByTerrain );
// Don't try to occlude globally bounded objects.
if( object->isGlobalBounds() )
return false;
const Vector< SceneObject* >& terrains = getSceneManager()->getContainer()->getTerrains();
const U32 numTerrains = terrains.size();
for( U32 terrainIdx = 0; terrainIdx < numTerrains; ++ terrainIdx )
{
TerrainBlock* terrain = dynamic_cast< TerrainBlock* >( terrains[ terrainIdx ] );
if( !terrain )
continue;
MatrixF terrWorldTransform = terrain->getWorldTransform();
Point3F localCamPos = getCameraState().getViewPosition();
terrWorldTransform.mulP(localCamPos);
F32 height;
terrain->getHeight( Point2F( localCamPos.x, localCamPos.y ), &height );
bool aboveTerrain = ( height <= localCamPos.z );
// Don't occlude if we're below the terrain. This prevents problems when
// looking out from underground bases...
if( !aboveTerrain )
continue;
const Box3F& oBox = object->getObjBox();
F32 minSide = getMin(oBox.len_x(), oBox.len_y());
if (minSide > 85.0f)
continue;
const Box3F& rBox = object->getWorldBox();
Point3F ul(rBox.minExtents.x, rBox.minExtents.y, rBox.maxExtents.z);
Point3F ur(rBox.minExtents.x, rBox.maxExtents.y, rBox.maxExtents.z);
Point3F ll(rBox.maxExtents.x, rBox.minExtents.y, rBox.maxExtents.z);
Point3F lr(rBox.maxExtents.x, rBox.maxExtents.y, rBox.maxExtents.z);
terrWorldTransform.mulP(ul);
terrWorldTransform.mulP(ur);
terrWorldTransform.mulP(ll);
terrWorldTransform.mulP(lr);
Point3F xBaseL0_s = ul - localCamPos;
Point3F xBaseL0_e = lr - localCamPos;
Point3F xBaseL1_s = ur - localCamPos;
Point3F xBaseL1_e = ll - localCamPos;
static F32 checkPoints[3] = {0.75, 0.5, 0.25};
RayInfo rinfo;
for( U32 i = 0; i < 3; i ++ )
{
Point3F start = (xBaseL0_s * checkPoints[i]) + localCamPos;
Point3F end = (xBaseL0_e * checkPoints[i]) + localCamPos;
if (terrain->castRay(start, end, &rinfo))
continue;
terrain->getHeight(Point2F(start.x, start.y), &height);
if ((height <= start.z) == aboveTerrain)
continue;
start = (xBaseL1_s * checkPoints[i]) + localCamPos;
end = (xBaseL1_e * checkPoints[i]) + localCamPos;
if (terrain->castRay(start, end, &rinfo))
continue;
Point3F test = (start + end) * 0.5;
if (terrain->castRay(localCamPos, test, &rinfo) == false)
continue;
return true;
}
}
return false;
}
示例3: lightVector
void blTerrainProxy::lightVector(LightInfo * light)
{
// Grab our terrain object
TerrainBlock* terrain = getObject();
if (!terrain)
return;
// Get the direction to the light (the inverse of the direction
// the light is pointing)
Point3F lightDir = -light->getDirection();
lightDir.normalize();
// Get the ratio between the light map pixel and world space (used below)
F32 lmTerrRatio = (F32)mTerrainBlockSize / (F32) mLightMapSize;
lmTerrRatio *= terrain->getSquareSize();
// Get the terrain position
Point3F terrPos( terrain->getTransform().getPosition() );
U32 i = 0;
for (U32 y = 0; y < mLightMapSize; y++)
{
for (U32 x = 0; x < mLightMapSize; x++)
{
// Get the relative pixel position and scale it
// by the ratio between lightmap and world space
Point2F pixelPos(x, y);
pixelPos *= lmTerrRatio;
// Start with a default normal of straight up
Point3F normal(0.0f, 0.0f, 1.0f);
// Try to get the actual normal from the terrain.
// Note: this won't change the default normal if
// it can't find a normal.
terrain->getNormal(pixelPos, &normal);
// The terrain lightmap only contains shadows.
F32 shadowed = 0.0f;
// Get the height at the lightmap pixel's position
F32 height = 0.0f;
terrain->getHeight(pixelPos, &height);
// Calculate the 3D position of the pixel
Point3F pixelPos3F(pixelPos.x, pixelPos.y, height);
// Translate that position by the terrain's transform
terrain->getTransform().mulP(pixelPos3F);
// Offset slighting along the normal so that we don't
// raycast into ourself
pixelPos3F += (normal * 0.1f);
// Calculate the light's position.
// If it is a vector light like the sun (no position
// just direction) then translate along that direction
// a reasonable distance to get a point sufficiently
// far away
Point3F lightPos = light->getPosition();
if(light->getType() == LightInfo::Vector)
{
lightPos = 1000.f * lightDir;
lightPos = pixelPos3F + lightPos;
}
// Cast a ray from the world space position of the lightmap pixel to the light source.
// If we hit something then we are in shadow. This allows us to be shadowed by anything
// that supports a castRay operation.
RayInfo info;
if(terrain->getContainer()->castRay(pixelPos3F, lightPos, STATIC_COLLISION_TYPEMASK, &info))
{
// Shadow the pixel.
shadowed = 1.0f;
}
// Set the final lightmap color.
mLightmap[i++] += ColorF::WHITE * mClampF( 1.0f - shadowed, 0.0f, 1.0f );
}
}
}