本文整理汇总了C++中TerminatorInst::getType方法的典型用法代码示例。如果您正苦于以下问题:C++ TerminatorInst::getType方法的具体用法?C++ TerminatorInst::getType怎么用?C++ TerminatorInst::getType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TerminatorInst
的用法示例。
在下文中一共展示了TerminatorInst::getType方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ProcessLoop
/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
/// all loops have preheaders.
///
bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
bool Changed = false;
ReprocessLoop:
// Check to see that no blocks (other than the header) in this loop have
// predecessors that are not in the loop. This is not valid for natural
// loops, but can occur if the blocks are unreachable. Since they are
// unreachable we can just shamelessly delete those CFG edges!
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
if (*BB == L->getHeader()) continue;
SmallPtrSet<BasicBlock*, 4> BadPreds;
for (pred_iterator PI = pred_begin(*BB),
PE = pred_end(*BB); PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P))
BadPreds.insert(P);
}
// Delete each unique out-of-loop (and thus dead) predecessor.
for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
E = BadPreds.end(); I != E; ++I) {
DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor ";
WriteAsOperand(dbgs(), *I, false);
dbgs() << "\n");
// Inform each successor of each dead pred.
for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
(*SI)->removePredecessor(*I);
// Zap the dead pred's terminator and replace it with unreachable.
TerminatorInst *TI = (*I)->getTerminator();
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
(*I)->getTerminator()->eraseFromParent();
new UnreachableInst((*I)->getContext(), *I);
Changed = true;
}
}
// If there are exiting blocks with branches on undef, resolve the undef in
// the direction which will exit the loop. This will help simplify loop
// trip count computations.
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
E = ExitingBlocks.end(); I != E; ++I)
if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
if (BI->isConditional()) {
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in ";
WriteAsOperand(dbgs(), *I, false);
dbgs() << "\n");
BI->setCondition(ConstantInt::get(Cond->getType(),
!L->contains(BI->getSuccessor(0))));
Changed = true;
}
}
示例2: removeTerminator
// Cleanly removes a terminator instruction.
void GNUstep::removeTerminator(BasicBlock *BB) {
TerminatorInst *BBTerm = BB->getTerminator();
// Remove the BB as a predecessor from all of successors
for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
BBTerm->getSuccessor(i)->removePredecessor(BB);
}
BBTerm->replaceAllUsesWith(UndefValue::get(BBTerm->getType()));
// Remove the terminator instruction itself.
BBTerm->eraseFromParent();
}
示例3: simplifyOneLoop
/// \brief Simplify one loop and queue further loops for simplification.
///
/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
/// Pass pointer. The Pass pointer is used by numerous utilities to update
/// specific analyses. Rather than a pass it would be much cleaner and more
/// explicit if they accepted the analysis directly and then updated it.
static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
DominatorTree *DT, LoopInfo *LI,
ScalarEvolution *SE, Pass *PP,
AssumptionCache *AC) {
bool Changed = false;
ReprocessLoop:
// Check to see that no blocks (other than the header) in this loop have
// predecessors that are not in the loop. This is not valid for natural
// loops, but can occur if the blocks are unreachable. Since they are
// unreachable we can just shamelessly delete those CFG edges!
for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
BB != E; ++BB) {
if (*BB == L->getHeader()) continue;
SmallPtrSet<BasicBlock*, 4> BadPreds;
for (pred_iterator PI = pred_begin(*BB),
PE = pred_end(*BB); PI != PE; ++PI) {
BasicBlock *P = *PI;
if (!L->contains(P))
BadPreds.insert(P);
}
// Delete each unique out-of-loop (and thus dead) predecessor.
for (BasicBlock *P : BadPreds) {
DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
<< P->getName() << "\n");
// Inform each successor of each dead pred.
for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
(*SI)->removePredecessor(P);
// Zap the dead pred's terminator and replace it with unreachable.
TerminatorInst *TI = P->getTerminator();
TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
P->getTerminator()->eraseFromParent();
new UnreachableInst(P->getContext(), P);
Changed = true;
}
}
// If there are exiting blocks with branches on undef, resolve the undef in
// the direction which will exit the loop. This will help simplify loop
// trip count computations.
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
E = ExitingBlocks.end(); I != E; ++I)
if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
if (BI->isConditional()) {
if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
<< (*I)->getName() << "\n");
BI->setCondition(ConstantInt::get(Cond->getType(),
!L->contains(BI->getSuccessor(0))));
// This may make the loop analyzable, force SCEV recomputation.
if (SE)
SE->forgetLoop(L);
Changed = true;
}
}
// Does the loop already have a preheader? If so, don't insert one.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
Preheader = InsertPreheaderForLoop(L, PP);
if (Preheader) {
++NumInserted;
Changed = true;
}
}
// Next, check to make sure that all exit nodes of the loop only have
// predecessors that are inside of the loop. This check guarantees that the
// loop preheader/header will dominate the exit blocks. If the exit block has
// predecessors from outside of the loop, split the edge now.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
ExitBlocks.end());
for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
E = ExitBlockSet.end(); I != E; ++I) {
BasicBlock *ExitBlock = *I;
for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
PI != PE; ++PI)
// Must be exactly this loop: no subloops, parent loops, or non-loop preds
// allowed.
if (!L->contains(*PI)) {
if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PP)) {
//.........这里部分代码省略.........
示例4: TestBlocks
bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
// Clone the program to try hacking it apart...
ValueToValueMapTy VMap;
Module *M = CloneModule(BD.getProgram(), VMap);
// Convert list to set for fast lookup...
SmallPtrSet<BasicBlock*, 8> Blocks;
for (unsigned i = 0, e = BBs.size(); i != e; ++i)
Blocks.insert(cast<BasicBlock>(VMap[BBs[i]]));
outs() << "Checking for crash with only these blocks:";
unsigned NumPrint = Blocks.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0, e = NumPrint; i != e; ++i)
outs() << " " << BBs[i]->getName();
if (NumPrint < Blocks.size())
outs() << "... <" << Blocks.size() << " total>";
outs() << ": ";
// Loop over and delete any hack up any blocks that are not listed...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
if (!Blocks.count(&*BB) && BB->getTerminator()->getNumSuccessors()) {
// Loop over all of the successors of this block, deleting any PHI nodes
// that might include it.
for (succ_iterator SI = succ_begin(&*BB), E = succ_end(&*BB); SI != E;
++SI)
(*SI)->removePredecessor(&*BB);
TerminatorInst *BBTerm = BB->getTerminator();
if (!BB->getTerminator()->getType()->isVoidTy())
BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType()));
// Replace the old terminator instruction.
BB->getInstList().pop_back();
new UnreachableInst(BB->getContext(), &*BB);
}
// The CFG Simplifier pass may delete one of the basic blocks we are
// interested in. If it does we need to take the block out of the list. Make
// a "persistent mapping" by turning basic blocks into <function, name> pairs.
// This won't work well if blocks are unnamed, but that is just the risk we
// have to take.
std::vector<std::pair<std::string, std::string> > BlockInfo;
for (BasicBlock *BB : Blocks)
BlockInfo.emplace_back(BB->getParent()->getName(), BB->getName());
// Now run the CFG simplify pass on the function...
std::vector<std::string> Passes;
Passes.push_back("simplifycfg");
Passes.push_back("verify");
std::unique_ptr<Module> New = BD.runPassesOn(M, Passes);
delete M;
if (!New) {
errs() << "simplifycfg failed!\n";
exit(1);
}
M = New.release();
// Try running on the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use basic block pointers that point into the now-current
// module, and that they don't include any deleted blocks.
BBs.clear();
const ValueSymbolTable &GST = M->getValueSymbolTable();
for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
Function *F = cast<Function>(GST.lookup(BlockInfo[i].first));
ValueSymbolTable &ST = F->getValueSymbolTable();
Value* V = ST.lookup(BlockInfo[i].second);
if (V && V->getType() == Type::getLabelTy(V->getContext()))
BBs.push_back(cast<BasicBlock>(V));
}
return true;
}
delete M; // It didn't crash, try something else.
return false;
}
示例5: TestBlocks
bool ReduceCrashingBlocks::TestBlocks(std::vector<const BasicBlock*> &BBs) {
// Clone the program to try hacking it apart...
DenseMap<const Value*, Value*> ValueMap;
Module *M = CloneModule(BD.getProgram(), ValueMap);
// Convert list to set for fast lookup...
SmallPtrSet<BasicBlock*, 8> Blocks;
for (unsigned i = 0, e = BBs.size(); i != e; ++i)
Blocks.insert(cast<BasicBlock>(ValueMap[BBs[i]]));
std::cout << "Checking for crash with only these blocks:";
unsigned NumPrint = Blocks.size();
if (NumPrint > 10) NumPrint = 10;
for (unsigned i = 0, e = NumPrint; i != e; ++i)
std::cout << " " << BBs[i]->getName();
if (NumPrint < Blocks.size())
std::cout << "... <" << Blocks.size() << " total>";
std::cout << ": ";
// Loop over and delete any hack up any blocks that are not listed...
for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I)
for (Function::iterator BB = I->begin(), E = I->end(); BB != E; ++BB)
if (!Blocks.count(BB) && BB->getTerminator()->getNumSuccessors()) {
// Loop over all of the successors of this block, deleting any PHI nodes
// that might include it.
for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
(*SI)->removePredecessor(BB);
TerminatorInst *BBTerm = BB->getTerminator();
if (isa<StructType>(BBTerm->getType()))
BBTerm->replaceAllUsesWith(UndefValue::get(BBTerm->getType()));
else if (BB->getTerminator()->getType() != Type::VoidTy)
BBTerm->replaceAllUsesWith(Constant::getNullValue(BBTerm->getType()));
// Replace the old terminator instruction.
BB->getInstList().pop_back();
new UnreachableInst(BB);
}
// The CFG Simplifier pass may delete one of the basic blocks we are
// interested in. If it does we need to take the block out of the list. Make
// a "persistent mapping" by turning basic blocks into <function, name> pairs.
// This won't work well if blocks are unnamed, but that is just the risk we
// have to take.
std::vector<std::pair<Function*, std::string> > BlockInfo;
for (SmallPtrSet<BasicBlock*, 8>::iterator I = Blocks.begin(),
E = Blocks.end(); I != E; ++I)
BlockInfo.push_back(std::make_pair((*I)->getParent(), (*I)->getName()));
// Now run the CFG simplify pass on the function...
PassManager Passes;
Passes.add(createCFGSimplificationPass());
Passes.add(createVerifierPass());
Passes.run(*M);
// Try running on the hacked up program...
if (TestFn(BD, M)) {
BD.setNewProgram(M); // It crashed, keep the trimmed version...
// Make sure to use basic block pointers that point into the now-current
// module, and that they don't include any deleted blocks.
BBs.clear();
for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
ValueSymbolTable &ST = BlockInfo[i].first->getValueSymbolTable();
Value* V = ST.lookup(BlockInfo[i].second);
if (V && V->getType() == Type::LabelTy)
BBs.push_back(cast<BasicBlock>(V));
}
return true;
}
delete M; // It didn't crash, try something else.
return false;
}