本文整理汇总了C++中TerminatorInst::getParent方法的典型用法代码示例。如果您正苦于以下问题:C++ TerminatorInst::getParent方法的具体用法?C++ TerminatorInst::getParent怎么用?C++ TerminatorInst::getParent使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TerminatorInst
的用法示例。
在下文中一共展示了TerminatorInst::getParent方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: visitCallInst
// visitCallInst - This converts all LLVM call instructions into invoke
// instructions. The except part of the invoke goes to the "LongJmpBlkPre"
// that grabs the exception and proceeds to determine if it's a longjmp
// exception or not.
void LowerSetJmp::visitCallInst(CallInst& CI)
{
if (CI.getCalledFunction())
if (!IsTransformableFunction(CI.getCalledFunction()->getName()) ||
CI.getCalledFunction()->isIntrinsic()) return;
BasicBlock* OldBB = CI.getParent();
// If not reachable from a setjmp call, don't transform.
if (!DFSBlocks.count(OldBB)) return;
BasicBlock* NewBB = OldBB->splitBasicBlock(CI);
assert(NewBB && "Couldn't split BB of \"call\" instruction!!");
DFSBlocks.insert(NewBB);
NewBB->setName("Call2Invoke");
Function* Func = OldBB->getParent();
// Construct the new "invoke" instruction.
TerminatorInst* Term = OldBB->getTerminator();
std::vector<Value*> Params(CI.op_begin() + 1, CI.op_end());
InvokeInst* II =
InvokeInst::Create(CI.getCalledValue(), NewBB, PrelimBBMap[Func],
Params.begin(), Params.end(), CI.getName(), Term);
II->setCallingConv(CI.getCallingConv());
II->setParamAttrs(CI.getParamAttrs());
// Replace the old call inst with the invoke inst and remove the call.
CI.replaceAllUsesWith(II);
CI.getParent()->getInstList().erase(&CI);
// The old terminator is useless now that we have the invoke inst.
Term->getParent()->getInstList().erase(Term);
++CallsTransformed;
}
示例2: LowerUnwinds
/// LowerUnwinds - Turn unwind instructions into calls to _Unwind_Resume,
/// rethrowing any previously caught exception. This will crash horribly
/// at runtime if there is no such exception: using unwind to throw a new
/// exception is currently not supported.
bool DwarfEHPrepare::LowerUnwinds() {
SmallVector<TerminatorInst*, 16> UnwindInsts;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
TerminatorInst *TI = I->getTerminator();
if (isa<UnwindInst>(TI))
UnwindInsts.push_back(TI);
}
if (UnwindInsts.empty()) return false;
// Find the rewind function if we didn't already.
if (!RewindFunction) {
LLVMContext &Ctx = UnwindInsts[0]->getContext();
std::vector<const Type*>
Params(1, Type::getInt8PtrTy(Ctx));
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
Params, false);
const char *RewindName = TLI->getLibcallName(RTLIB::UNWIND_RESUME);
RewindFunction = F->getParent()->getOrInsertFunction(RewindName, FTy);
}
bool Changed = false;
for (SmallVectorImpl<TerminatorInst*>::iterator
I = UnwindInsts.begin(), E = UnwindInsts.end(); I != E; ++I) {
TerminatorInst *TI = *I;
// Replace the unwind instruction with a call to _Unwind_Resume (or the
// appropriate target equivalent) followed by an UnreachableInst.
// Create the call...
CallInst *CI = CallInst::Create(RewindFunction,
CreateReadOfExceptionValue(TI->getParent()),
"", TI);
CI->setCallingConv(TLI->getLibcallCallingConv(RTLIB::UNWIND_RESUME));
// ...followed by an UnreachableInst.
new UnreachableInst(TI->getContext(), TI);
// Nuke the unwind instruction.
TI->eraseFromParent();
++NumUnwindsLowered;
Changed = true;
}
return Changed;
}
示例3: runOnFunction
bool PlaceSafepoints::runOnFunction(Function &F) {
if (F.isDeclaration() || F.empty()) {
// This is a declaration, nothing to do. Must exit early to avoid crash in
// dom tree calculation
return false;
}
bool modified = false;
// In various bits below, we rely on the fact that uses are reachable from
// defs. When there are basic blocks unreachable from the entry, dominance
// and reachablity queries return non-sensical results. Thus, we preprocess
// the function to ensure these properties hold.
modified |= removeUnreachableBlocks(F);
// STEP 1 - Insert the safepoint polling locations. We do not need to
// actually insert parse points yet. That will be done for all polls and
// calls in a single pass.
// Note: With the migration, we need to recompute this for each 'pass'. Once
// we merge these, we'll do it once before the analysis
DominatorTree DT;
std::vector<CallSite> ParsePointNeeded;
if (EnableBackedgeSafepoints) {
// Construct a pass manager to run the LoopPass backedge logic. We
// need the pass manager to handle scheduling all the loop passes
// appropriately. Doing this by hand is painful and just not worth messing
// with for the moment.
FunctionPassManager FPM(F.getParent());
PlaceBackedgeSafepointsImpl *PBS =
new PlaceBackedgeSafepointsImpl(EnableCallSafepoints);
FPM.add(PBS);
// Note: While the analysis pass itself won't modify the IR, LoopSimplify
// (which it depends on) may. i.e. analysis must be recalculated after run
FPM.run(F);
// We preserve dominance information when inserting the poll, otherwise
// we'd have to recalculate this on every insert
DT.recalculate(F);
// Insert a poll at each point the analysis pass identified
for (size_t i = 0; i < PBS->PollLocations.size(); i++) {
// We are inserting a poll, the function is modified
modified = true;
// The poll location must be the terminator of a loop latch block.
TerminatorInst *Term = PBS->PollLocations[i];
std::vector<CallSite> ParsePoints;
if (SplitBackedge) {
// Split the backedge of the loop and insert the poll within that new
// basic block. This creates a loop with two latches per original
// latch (which is non-ideal), but this appears to be easier to
// optimize in practice than inserting the poll immediately before the
// latch test.
// Since this is a latch, at least one of the successors must dominate
// it. Its possible that we have a) duplicate edges to the same header
// and b) edges to distinct loop headers. We need to insert pools on
// each. (Note: This still relies on LoopSimplify.)
DenseSet<BasicBlock *> Headers;
for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
BasicBlock *Succ = Term->getSuccessor(i);
if (DT.dominates(Succ, Term->getParent())) {
Headers.insert(Succ);
}
}
assert(!Headers.empty() && "poll location is not a loop latch?");
// The split loop structure here is so that we only need to recalculate
// the dominator tree once. Alternatively, we could just keep it up to
// date and use a more natural merged loop.
DenseSet<BasicBlock *> SplitBackedges;
for (BasicBlock *Header : Headers) {
BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, nullptr);
SplitBackedges.insert(NewBB);
}
DT.recalculate(F);
for (BasicBlock *NewBB : SplitBackedges) {
InsertSafepointPoll(DT, NewBB->getTerminator(), ParsePoints);
NumBackedgeSafepoints++;
}
} else {
// Split the latch block itself, right before the terminator.
InsertSafepointPoll(DT, Term, ParsePoints);
NumBackedgeSafepoints++;
}
// Record the parse points for later use
ParsePointNeeded.insert(ParsePointNeeded.end(), ParsePoints.begin(),
ParsePoints.end());
}
}
if (EnableEntrySafepoints) {
DT.recalculate(F);
Instruction *term = findLocationForEntrySafepoint(F, DT);
//.........这里部分代码省略.........