本文整理汇总了C++中TPt::SetNDat方法的典型用法代码示例。如果您正苦于以下问题:C++ TPt::SetNDat方法的具体用法?C++ TPt::SetNDat怎么用?C++ TPt::SetNDat使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TPt
的用法示例。
在下文中一共展示了TPt::SetNDat方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Dijkstra
//! Given pGraph with data about edge weights, computes the distance of the shortest paths from sourceNode
//! and returns the result in the nodes of pDAGGraph.
//! Updates the edges if bUpdateEdges is set to true. Default is false. In that case only the node data is updated with the shortest distance to sourceNode.
//! @note Requires initial values for the nodes of pDAGGraph (edges are not needed)
void Dijkstra(const TPt<TNodeEDatNet<TFlt, TFlt>>& pGraph, int sourceNode, double dThreshold, TPt<TNodeEDatNet<TFlt, TFlt>>& pDAGGraph, bool bUpdateEdges = false)
{
double logThreshold = log(dThreshold);
if(dThreshold==0)
logThreshold=-DBL_MAX;
// List of visited nodes
std::map<int, bool> visitedNodes;
// Stores the edge vertices to build the final DAG
std::map<int, int> mapPrevious;
std::priority_queue<std::pair<int,double>, std::vector<std::pair<int,double>>, Order> nodesToVisit;
// Distance from source node to itself is 0
pDAGGraph->SetNDat(sourceNode, 0);
nodesToVisit.push(std::make_pair(sourceNode,0));
// Beginning of the loop of Dijkstra algorithm
while(!nodesToVisit.empty())
{
// Find the vertex in queue with the smallest distance and remove it
int iParentID = -1;
while (!nodesToVisit.empty() && visitedNodes[iParentID = nodesToVisit.top().first])
nodesToVisit.pop();
if (iParentID == -1) break;
// mark the vertex with the shortest distance
visitedNodes[iParentID]=true;
auto parent = pGraph->GetNI(iParentID);
int numChildren = parent.GetOutDeg();
for(int i = 0; i < numChildren; ++i)
{
int iChildID = parent.GetOutNId(i);
// Accumulate the shortest distance from source
double alt = pDAGGraph->GetNDat(iParentID) - log(parent.GetOutEDat(i).Val);
if(alt >= logThreshold)
{
auto it = visitedNodes.find(iChildID);
if (alt < pDAGGraph->GetNDat(iChildID) && it->second == false)
{
//1. update distance
//2. update the predecessor
//3. push new shortest rank of chidren nodes
pDAGGraph->SetNDat(iChildID, alt);
mapPrevious[iChildID]= iParentID;
nodesToVisit.push(std::make_pair(iChildID,alt));
}
}
}
}
if(bUpdateEdges)
for(auto it=mapPrevious.begin(); it!= mapPrevious.end(); ++it)
{
pDAGGraph->AddEdge(it->second, it->first);
pDAGGraph->SetEDat(it->second,it->first, pGraph->GetEDat(it->second,it->first));
}
}
示例2: while
// Test update node data
TEST(TNodeEdgeNet, UpdateNodeData) {
int NNodes = 10000;
int NEdges = 100000;
TPt <TNodeEdgeNet<TInt, TInt> > Net;
TPt <TNodeEdgeNet<TInt, TInt> > Net1;
TPt <TNodeEdgeNet<TInt, TInt> > Net2;
int i;
int n;
int NCount;
int x,y;
Net = TNodeEdgeNet<TInt, TInt>::New();
EXPECT_EQ(1,Net->Empty());
// create the nodes
for (i = 0; i < NNodes; i++) {
Net->AddNode(i,i+5);
}
EXPECT_EQ(0,Net->Empty());
EXPECT_EQ(NNodes,Net->GetNodes());
// create random edges
NCount = NEdges;
while (NCount > 0) {
x = (long) (drand48() * NNodes);
y = (long) (drand48() * NNodes);
n = Net->AddEdge(x, y);
NCount--;
}
EXPECT_EQ(NEdges,Net->GetEdges());
EXPECT_EQ(0,Net->Empty());
EXPECT_EQ(1,Net->IsOk());
for (i = 0; i < NNodes; i++) {
EXPECT_EQ(1,Net->IsNode(i));
}
EXPECT_EQ(0,Net->IsNode(NNodes));
EXPECT_EQ(0,Net->IsNode(NNodes+1));
EXPECT_EQ(0,Net->IsNode(2*NNodes));
// test node data
for (TNodeEdgeNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
EXPECT_EQ(NI.GetId()+5, Net->GetNDat(NI.GetId()));
}
// update node data, node ID + 10
for (TNodeEdgeNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
Net->SetNDat(NI.GetId(), NI.GetId()+10);
}
// test node data
for (TNodeEdgeNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
EXPECT_EQ(NI.GetId()+10, Net->GetNDat(NI.GetId()));
}
}
示例3: SetNodeData
// Test set node data
void SetNodeData() {
int NNodes = 10000;
int NEdges = 100000;
TPt <TNodeEDatNet<TInt, TInt> > Net;
TPt <TNodeEDatNet<TInt, TInt> > Net1;
TPt <TNodeEDatNet<TInt, TInt> > Net2;
int i;
int n;
int NCount;
int x,y;
bool t;
int NodeId;
int NodeDat;
int Value;
bool ok;
Net = TNodeEDatNet<TInt, TInt>::New();
t = Net->Empty();
// create the nodes
for (i = 0; i < NNodes; i++) {
Net->AddNode(i);
}
t = Net->Empty();
n = Net->GetNodes();
// create random edges
NCount = NEdges;
while (NCount > 0) {
x = (long) (drand48() * NNodes);
y = (long) (drand48() * NNodes);
// Net->GetEdges() is not correct for the loops (x == y),
// skip the loops in this test
if (x != y && !Net->IsEdge(x,y)) {
n = Net->AddEdge(x, y);
NCount--;
}
}
PrintNStats("SetNodeData:Net", Net);
// set node data, square of node ID
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
NodeId = NI.GetId();
NodeDat = NI.GetId()*NI.GetId();
Net->SetNDat(NodeId, NodeDat);
}
// read and test node data
ok = true;
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
NodeDat = Net->GetNDat(NI.GetId());
Value = NI.GetId()*NI.GetId();
if (NodeDat != Value) {
ok = false;
}
}
printf("network SetNodeData:Net, status %s\n", (ok == true) ? "ok" : "ERROR");
}
示例4: RandomGraphInitialization
// before generating DAG
void RandomGraphInitialization(TPt<TNodeEDatNet<TFlt, TFlt>> &pGraph)
{
srand(time(NULL));
for (auto EI = pGraph->BegEI(); EI < pGraph->EndEI(); EI++)
pGraph->SetEDat(EI.GetSrcNId(), EI.GetDstNId(), (double) rand() / RAND_MAX);
for (auto NI = pGraph->BegNI(); NI < pGraph->EndNI(); NI++)
pGraph->SetNDat(NI.GetId(), 0.0);
}
示例5: SortNodeData
// Test node data sorting
void SortNodeData() {
int NNodes = 10000;
int NEdges = 100000;
TPt <TNodeEDatNet<TInt, TInt> > Net;
TPt <TNodeEDatNet<TInt, TInt> > Net1;
TPt <TNodeEDatNet<TInt, TInt> > Net2;
int i;
int n;
int NCount;
int x,y;
bool t;
int NodeId;
int NodeDat;
bool ok;
bool Sorted;
int Min;
int Value;
Net = TNodeEDatNet<TInt, TInt>::New();
t = Net->Empty();
// create the nodes
for (i = 0; i < NNodes; i++) {
Net->AddNode((i*13) % NNodes);
}
t = Net->Empty();
n = Net->GetNodes();
// create random edges
NCount = NEdges;
while (NCount > 0) {
x = (long) (drand48() * NNodes);
y = (long) (drand48() * NNodes);
// Net->GetEdges() is not correct for the loops (x == y),
// skip the loops in this test
if (x != y && !Net->IsEdge(x,y)) {
n = Net->AddEdge(x, y);
NCount--;
}
}
PrintNStats("SortNodeData:Net", Net);
// add data to nodes, square of node ID % NNodes
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
NodeId = NI.GetId();
NodeDat = (NI.GetId()*NI.GetId()) % NNodes;
Net->SetNDat(NodeId, NodeDat);
}
// test node data
ok = true;
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
NodeDat = Net->GetNDat(NI.GetId());
Value = (NI.GetId()*NI.GetId()) % NNodes;
if (NodeDat != Value) {
ok = false;
}
}
printf("network SortNodeData:Net, status1 %s\n", (ok == true) ? "ok" : "ERROR");
// test sorting of node IDs (unsorted)
Min = -1;
Sorted = true;
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
Value = NI.GetId();
if (Min > Value) {
Sorted = false;
}
Min = Value;
}
printf("network SortNodeData:Net, status2 %s\n", (Sorted == false) ? "ok" : "ERROR");
// sort the nodes by node IDs (sorted)
Net->SortNIdById();
// test sorting of node IDs
Min = -1;
Sorted = true;
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
Value = NI.GetId();
if (Min > Value) {
Sorted = false;
}
Min = Value;
}
printf("network SortNodeData:Net, status3 %s\n", (Sorted == true) ? "ok" : "ERROR");
// test sorting of node data (unsorted)
Min = -1;
Sorted = true;
for (TNodeEDatNet<TInt, TInt>::TNodeI NI = Net->BegNI(); NI < Net->EndNI(); NI++) {
Value = Net->GetNDat(NI.GetId());
if (Min > Value) {
Sorted = false;
}
Min = Value;
}
printf("network SortNodeData:Net, status4 %s\n", (Sorted == false) ? "ok" : "ERROR");
//.........这里部分代码省略.........
示例6: InitializationBeforePropagation
// before belief propagation
void InitializationBeforePropagation(TPt<TNodeEDatNet<TFlt, TFlt>>& pGraph)
{
for (auto NI = pGraph->BegNI(); NI < pGraph->EndNI(); NI++)
pGraph->SetNDat(NI.GetId(), 0.0);
}