本文整理汇总了C++中TPZCompMesh::Solution方法的典型用法代码示例。如果您正苦于以下问题:C++ TPZCompMesh::Solution方法的具体用法?C++ TPZCompMesh::Solution怎么用?C++ TPZCompMesh::Solution使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TPZCompMesh
的用法示例。
在下文中一共展示了TPZCompMesh::Solution方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
///Funcao principal do programa
int main(int argc, char *argv[])
{
int dim = 2;//dimensao do problema
int uNDiv=3,
vNDiv=4;//numero de divisoes feitas no dominio
int nel = uNDiv*vNDiv; //numero de elementos a serem utilizados
int pOrder = 4; //ordem polinomial de aproximacao
TPZGeoMesh *gmesh = CreateGMesh(nel, uNDiv, vNDiv); //funcao para criar a malha geometrica
TPZCompMesh *cmesh = CMesh(gmesh, pOrder); //funcao para criar a malha computacional
// Resolvendo o Sistema
bool optimizeBandwidth = false; //impede a renumeracao das equacoes do problema(para obter o mesmo resultado do Oden)
TPZAnalysis an(cmesh, optimizeBandwidth); //cria objeto de analise que gerenciaria a analise do problema
an.Run();//assembla a matriz de rigidez (e o vetor de carga) global e inverte o sistema de equacoes
TPZFMatrix<STATE> solucao=cmesh->Solution();//Pegando o vetor de solucao, alphaj
solucao.Print("Sol",cout,EMathematicaInput);//imprime na formatacao do Mathematica
//fazendo pos processamento para paraview
TPZStack<string> scalnames, vecnames;
scalnames.Push("State");//setando para imprimir u
string plotfile = "ModelProblemSol.vtk";//arquivo de saida que estara na pasta debug
an.DefineGraphMesh(dim, scalnames, vecnames, plotfile);//define malha grafica
int postProcessResolution = 3;//define resolucao do pos processamento
an.PostProcess(postProcessResolution);//realiza pos processamento
std::cout << "FINISHED!" << std::endl;
return 0;
}
示例2: main
//.........这里部分代码省略.........
firstmesh->NodeVec()[1].Initialize(coord,*firstmesh);
coord[1] = 1.0;
firstmesh->NodeVec()[2].Initialize(coord,*firstmesh);
// coord[0] = 0.0;
// firstmesh->NodeVec()[3].Initialize(coord,*firstmesh);
TPZVec<int> nodeindexes(3);//triangulo
nodeindexes[0] = 0;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 1;
nodeindexes[2] = 2;
//elementos geometricos
TPZGeoElT2d *elq1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh);
//orientacao local de um segundo elemento superposto
int i,sen;;
cout<<"Sentido local antihorario/horario : 0/1 ? ";
cin>>sen;
cout<<"Entre primeiro no = 0,1,2 : ";
cin>>i;
if(sen==0) {//direito
nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2}
nodeindexes[1] = (1+i)%3;
nodeindexes[2] = (2+i)%3;
} else {//inverso
nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2}
nodeindexes[1] = (2+i)%3;
nodeindexes[2] = (1+i)%3;
}
/* nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 2;
nodeindexes[2] = 3;*/
TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh);//segundo elemento superposto ao primeiro
/* coord[1] = 0.0;
coord[0] = 2.0;
firstmesh->NodeVec()[4].Initialize(coord,*firstmesh);
coord[1] = 1.0;
firstmesh->NodeVec()[5].Initialize(coord,*firstmesh);
nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 4;
nodeindexes[2] = 5;
nodeindexes[3] = 2;
TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); */
//Arquivos de saida
ofstream outgm1("outgm1.dat");
ofstream outcm1("outcm1.dat");
ofstream outcm2("outcm2.dat");
//montagem de conectividades entre elementos
firstmesh->BuildConnectivity();
firstmesh->Print(outgm1);
outgm1.flush();
//teste de divisao geometrica : 1 elemento
TPZVec<TPZGeoEl *> vecsub,vecsub1;
elq1->Divide(vecsub);//divide 0
elq2->Divide(vecsub);//divide 1
/* vecsub[2]->Divide(vecsub1);//
vecsub1[3]->Divide(vecsub1);
vecsub[0]->Divide(vecsub1);//divide 1
vecsub1[2]->Divide(vecsub1); */
firstmesh->Print(outgm1);
outgm1.flush();
//malha computacional
TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh);
//material
int matindex = secondmesh->MaterialVec().AllocateNewElement();
TPZFMatrix k(1,1,1.),f(1,1,0.),c(1,2,1.);
TPZMat2dLin * mat = new TPZMat2dLin(1);
mat->SetMaterial(k,c,f);
//mat->SetForcingFunction(force);
mat->SetForcingFunction(derivforce);
secondmesh->MaterialVec()[matindex] = mat;
//CC : condicao de contorno
//ordem de interpolacao
// TPZCompEl::gOrder = 3;
cmesh.SetDefaultOrder(3);
//constroe a malha computacional
secondmesh->AutoBuild();
secondmesh->InitializeBlock();
secondmesh->ComputeConnectSequence();
secondmesh->Print(outcm1);
outcm1.flush();
//Resolucao do sistema
TPZFMatrix Rhs(secondmesh->NEquations(),1),Stiff(secondmesh->NEquations(),secondmesh->NEquations()),U;
Stiff.Zero();
Rhs.Zero();
secondmesh->Assemble(Stiff,Rhs);
Rhs.Print("Rhs teste",outcm2);
Stiff.Print("Bloco teste",outcm2);
Rhs.Print("Computational Mesh -> fBlock",outcm2);
TPZMatrixSolver solver(&Stiff);
solver.SetDirect(ELU);
solver.Solve(Rhs,U);
U.Print("Resultado",outcm2);
secondmesh->LoadSolution(U);
secondmesh->Solution().Print("Mesh solution ",outcm2);
// TPZElementMatrix ek,ef;
// secondmesh->ElementVec()[0]->CalcStiff(ek,ef);
// ek.fMat->Print();
// ef.fMat->Print();
delete secondmesh;
delete firstmesh;
return 0;
}