本文整理汇总了C++中TPZCompMesh::CleanUpUnconnectedNodes方法的典型用法代码示例。如果您正苦于以下问题:C++ TPZCompMesh::CleanUpUnconnectedNodes方法的具体用法?C++ TPZCompMesh::CleanUpUnconnectedNodes怎么用?C++ TPZCompMesh::CleanUpUnconnectedNodes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TPZCompMesh
的用法示例。
在下文中一共展示了TPZCompMesh::CleanUpUnconnectedNodes方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mat
TPZCompMesh *MalhaCompDois(TPZGeoMesh * gmesh, int pOrder, bool isdiscontinuous)
{
/// criar materiais
int dim = 2;
TPZMatPoisson3d *material;
material = new TPZMatPoisson3d(matId,dim);
TPZMaterial * mat(material);
material->SetNoPenalty();
material->SetNonSymmetric();
REAL diff = -1.;
REAL conv = 0.;
TPZVec<REAL> convdir(3,0.);
REAL flux = 0.;
material->SetParameters(diff, conv, convdir);
material->SetInternalFlux(flux);
material->NStateVariables();
TPZCompEl::SetgOrder(pOrder);
TPZCompMesh * cmesh = new TPZCompMesh(gmesh);
cmesh->SetDimModel(dim);
//cmesh->SetAllCreateFunctionsContinuous();
cmesh->InsertMaterialObject(mat);
TPZAutoPointer<TPZFunction<STATE> > forcef = new TPZDummyFunction<STATE>(ForcingF, 5);
material->SetForcingFunction(forcef);
///Inserir condicao de contorno
TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.);
TPZMaterial * BCond0 = material->CreateBC(mat, bc0,dirichlet, val1, val2);
TPZMaterial * BCond2 = material->CreateBC(mat, bc2,dirichlet, val1, val2);
TPZMaterial * BCond1 = material->CreateBC(mat, bc1,dirichlet, val1, val2);
TPZMaterial * BCond3 = material->CreateBC(mat, bc3,dirichlet, val1, val2);
cmesh->InsertMaterialObject(BCond0);
cmesh->InsertMaterialObject(BCond1);
cmesh->InsertMaterialObject(BCond2);
cmesh->InsertMaterialObject(BCond3);
//Ajuste da estrutura de dados computacional
if (isdiscontinuous==true) {
//Set discontinuous functions
cmesh->SetAllCreateFunctionsDiscontinuous();
cmesh->AutoBuild();
cmesh->ExpandSolution();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
}
else{
cmesh->SetAllCreateFunctionsContinuous();
cmesh->AutoBuild();
cmesh->ExpandSolution();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
}
return cmesh;
}
示例2: UndoMakeRaviartTomas
/**
* @brief transform in low order Raviar Tomas
*/
void TPZCreateApproximationSpace::UndoMakeRaviartTomas(TPZCompMesh &cmesh)
{
int numcell = cmesh.NElements();
int el;
for (el = 0; el<numcell ; el++) {
TPZCompEl *cel = cmesh.ElementVec()[el];
TPZInterpolatedElement *intel = dynamic_cast<TPZInterpolatedElement *>(cel);
if (!intel) {
continue;
}
TPZGeoEl *gel = intel->Reference();
int geldim = gel->Dimension();
int is;
int nsides = gel->NSides();
for (is=0; is<nsides; is++) {
if (gel->SideDimension(is) != geldim-1) {
continue;
}
int nsconnects = intel->NSideConnects(is);
// only interested in HDiv elements
if (nsconnects != 1) {
continue;
}
// int cindex = intel->SideConnectIndex(0, is);
TPZConnect &c = intel->Connect(intel->SideConnectLocId(0,is));
if (c.HasDependency()) {
c.RemoveDepend();
}
}
}
cmesh.ExpandSolution();
cmesh.CleanUpUnconnectedNodes();
}
示例3: ComputationalMesh
TPZCompMesh * ComputationalMesh(TPZGeoMesh * gmesh, int p)
{
int matid = 1;
int dim = 2;
REAL wavespeed = 1.0;
///Computational Mesh
TPZCompEl::SetgOrder(p);
TPZCompMesh * cmesh = new TPZCompMesh(gmesh);
cmesh->SetDimModel(dim);
cmesh->SetAllCreateFunctionsContinuous();
TPZMaterial * Air = new TPZLinearWave(matid,dim);
cmesh->InsertMaterialObject(Air);
{
//Boundary Conditions
TPZFMatrix<STATE> k1(dim,dim,0.), k2(dim,dim,0.);
TPZMaterial * BCD = Air->CreateBC(Air, 2, 0, k1, k2);
cmesh->InsertMaterialObject(BCD);
TPZMaterial * BCN = Air->CreateBC(Air, 3, 1, k1, k2);
cmesh->InsertMaterialObject(BCN);
}
cmesh->AutoBuild();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
return cmesh;
}
示例4: mat
TPZCompMesh *CompMesh1D(TPZGeoMesh *gmesh,int p, TPZMaterial *material,TPZVec<int> &bc,TPZVec<int> &bcType) {
if(!material || bc.NElements()<2 || bcType.NElements() != bc.NElements()) return NULL;
int dim = 1;
TPZAutoPointer<TPZMaterial> mat(material);
// related to interpolation space
TPZCompEl::SetgOrder(p);
TPZCompMesh *cmesh = new TPZCompMesh(gmesh);
cmesh->SetDimModel(dim);
cmesh->SetAllCreateFunctionsContinuous();
cmesh->InsertMaterialObject(mat);
// Related to boundary conditions
// REAL uN=1-cosh(1.)/sinh(1.);
TPZFMatrix<STATE> val1(1,1,0.), val2(1,1,0.);
if(!bcType[0]) // dirichlet
val2.PutVal(0,0,0.0);
TPZAutoPointer<TPZMaterial> BCond1 = material->CreateBC(mat, bc[0],bcType[0], val1, val2);
cmesh->InsertMaterialObject(BCond1);
if(!bcType[1]) // dirichlet
val2.PutVal(0,0,0.0);
TPZAutoPointer<TPZMaterial> BCond2 = material->CreateBC(mat, bc[1],bcType[1], val1, val2);
cmesh->InsertMaterialObject(BCond2);
//Adjusting data
cmesh->AutoBuild();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
return cmesh;
}
示例5: TPZCompMesh
TPZCompMesh *MalhaMultifisicaOpt(TPZVec<TPZCompMesh *> meshvec, TPZGeoMesh *gmesh){
//Creating computational mesh for multiphysic elements
gmesh->ResetReference();
TPZCompMesh *mphysics = new TPZCompMesh(gmesh);
//criando material
int dim =2;
TPZMatPoissonControl *material = new TPZMatPoissonControl(MatId,dim);
//incluindo os dados do problema
REAL k=1;
REAL alpha=1;
material-> SetParameters( k, alpha);
//solucao exata
TPZAutoPointer<TPZFunction<STATE> > solexata;
solexata = new TPZDummyFunction<STATE>(StateAd, 5);
material->SetForcingFunctionExact(solexata);
//funcao do lado direito da equacao do problema
TPZAutoPointer<TPZFunction<STATE> > force;
TPZDummyFunction<STATE> *dum;
dum = new TPZDummyFunction<STATE>(OptForcing, 5);
dum->SetPolynomialOrder(20);
force = dum;
material->SetForcingFunction(force);
//inserindo o material na malha computacional
TPZMaterial *mat(material);
mphysics->InsertMaterialObject(mat);
mphysics->SetDimModel(dim);
//Criando condicoes de contorno
TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.);
TPZMaterial * BCond0 = material->CreateBC(mat, bc0, bcdirichlet, val1, val2);
TPZMaterial * BCond1 = material->CreateBC(mat, bc1, bcdirichlet, val1, val2);
TPZMaterial * BCond2 = material->CreateBC(mat, bc2, bcdirichlet, val1, val2);
TPZMaterial * BCond3 = material->CreateBC(mat, bc3, bcdirichlet, val1, val2);
///Inserir condicoes de contorno
mphysics->InsertMaterialObject(BCond0);
mphysics->InsertMaterialObject(BCond1);
mphysics->InsertMaterialObject(BCond2);
mphysics->InsertMaterialObject(BCond3);
mphysics->SetAllCreateFunctionsMultiphysicElem();
//Fazendo auto build
mphysics->AutoBuild();
mphysics->AdjustBoundaryElements();
mphysics->CleanUpUnconnectedNodes();
TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics);
TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics);
TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics);
return mphysics;
}
示例6: mp
//.........这里部分代码省略.........
int in;
nodeindex.Resize(numnos[nel]);
for(in=0; in<numnos[nel]; in++) {
nodeindex[in] = nodind[nel][in];
}
int index;
switch(nel) {
case 0:
// elvec[el] = gmesh->CreateGeoElement(ECube,nodeindex,1,index);
// gelvec[nel]=new TPZGeoElC3d(nodeindex,matid,*gmesh);
break;
case 1:
gelvec[nel] = gmesh->CreateGeoElement(EPiramide,nodeindex,matid,index);
// gelvec[nel]=new TPZGeoElPi3d(nodeindex,matid,*gmesh);
break;
case 2:
gelvec[nel] = gmesh->CreateGeoElement(ETetraedro,nodeindex,matid,index);
// gelvec[nel]=new TPZGeoElT3d(nodeindex,matid,*gmesh);
break;
case 3:
// gelvec[nel]=new TPZGeoElPr3d(nodeindex,matid,*gmesh);
// gelvec[nel] = gmesh->CreateGeoElement(EPrisma,nodeindex,matid,index);
break;
case 4:
// gelvec[nel]=new TPZGeoEl1d(nodeindex,2,*gmesh);
break;
case 5:
// gelvec[nel]=new TPZGeoElQ2d(nodeindex,3,*gmesh);
break;
case 6:
// gelvec[nel]=new TPZGeoElT2d(nodeindex,3,*gmesh);
break;
default:
break;
}
}
gmesh->BuildConnectivity2();
//TPZVec<TPZGeoEl *> sub;
//elvec[0]->Divide(sub);
// elvec[1]->Divide(sub);
// elvec[2]->Divide(sub);
// TPZGeoElBC gbc;
// bc -1 -> Dirichlet
// TPZGeoElBC gbc1(gelvec[0],20,-1,*gmesh);
TPZGeoElBC gbc11(gelvec[1],14,-1,*gmesh);
// TPZGeoElBC gbc12(gelvec[3],15,-1,*gmesh);
// bc -2 -> Neumann at the right x==1
// TPZGeoElBC gbc2(gelvec[0],25,-2,*gmesh);
// TPZGeoElBC gbc21(gelvec[3],19,-2,*gmesh);
TPZGeoElBC gbc22(gelvec[2],10,-2,*gmesh);
TPZCompMesh *cmesh = new TPZCompMesh(gmesh);
TPZAutoPointer<TPZMaterial> mat;
// if(nstate == 3) {
mat = new TPZMaterialTest3D(1);
TPZFMatrix mp (3,1,0.);
TPZMaterialTest3D * mataux = dynamic_cast<TPZMaterialTest3D *> (mat.operator ->());
TPZMaterialTest3D::geq3=1;
mataux->SetMaterial(mp);
/* } else {
TPZMat2dLin *mat2d = new TPZMat2dLin(1);
int ist,jst;
TPZFMatrix xk(nstate,nstate,1.),xc(nstate,nstate,0.),xf(nstate,1,0.);
for(ist=0; ist<nstate; ist++) {
if(nstate != 1) xf(ist,0) = 1.;
for(jst=0; jst<nstate; jst++) {
if(ist != jst) xk(ist,jst) = 0.;
}
}
mat2d->SetMaterial(xk,xc,xf);
mat = mat2d;
}*/
TPZFMatrix val1(3,3,0.),val2(3,1,0.);
TPZAutoPointer<TPZMaterial> bc[2];
bc[0] = mat->CreateBC(mat,-1,0,val1,val2);
val2(0,0) = 1.;
bc[1] = mat->CreateBC(mat,-2,1,val1,val2);
cmesh->InsertMaterialObject(mat);
int i;
for(i=0; i<2; i++) cmesh->InsertMaterialObject(bc[i]);
gmesh->Print(cout);
cmesh->AutoBuild();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
gmesh->Print(cout);
return cmesh;
}
示例7: TPZCompMesh
//malha multifisica para o metodo da dupla projecao
TPZCompMesh *MalhaMDP(TPZVec<TPZCompMesh *> meshvec,TPZGeoMesh * gmesh){
//Creating computational mesh for multiphysic elements
gmesh->ResetReference();
TPZCompMesh *mphysics = new TPZCompMesh(gmesh);
//criando material
int dim =2;
TPZMDPMaterial *material = new TPZMDPMaterial(1,dim);
//incluindo os dados do problema
REAL coefk = 1.;
material->SetParameters(coefk, 0.);
//solucao exata
TPZAutoPointer<TPZFunction<STATE> > solexata;
solexata = new TPZDummyFunction<STATE>(SolSuave);
material->SetForcingFunctionExact(solexata);
//funcao do lado direito da equacao do problema
TPZAutoPointer<TPZFunction<STATE> > force;
TPZDummyFunction<STATE> *dum;
dum = new TPZDummyFunction<STATE>(ForceSuave);
dum->SetPolynomialOrder(20);
force = dum;
material->SetForcingFunction(force);
//inserindo o material na malha computacional
TPZMaterial *mat(material);
mphysics->InsertMaterialObject(mat);
//Criando condicoes de contorno
TPZFMatrix<STATE> val1(2,2,0.), val2(2,1,0.);
int boundcond = dirichlet;
//BC -1
TPZMaterial * BCondD1 = material->CreateBC(mat, bc1,boundcond, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet1 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD1->SetForcingFunction(bcmatDirichlet1);
mphysics->InsertMaterialObject(BCondD1);
//BC -2
TPZMaterial * BCondD2 = material->CreateBC(mat, bc2,boundcond, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet2 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD2->SetForcingFunction(bcmatDirichlet2);
mphysics->InsertMaterialObject(BCondD2);
//BC -3
TPZMaterial * BCondD3 = material->CreateBC(mat, bc3,boundcond, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet3 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD3->SetForcingFunction(bcmatDirichlet3);
mphysics->InsertMaterialObject(BCondD3);
//BC -4
TPZMaterial * BCondD4 = material->CreateBC(mat, bc4,boundcond, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet4 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD4->SetForcingFunction(bcmatDirichlet4);
mphysics->InsertMaterialObject(BCondD4);
mphysics->InsertMaterialObject(BCondD1);
mphysics->InsertMaterialObject(BCondD2);
mphysics->InsertMaterialObject(BCondD3);
mphysics->InsertMaterialObject(BCondD4);
//set multiphysics element
mphysics->SetDimModel(dim);
mphysics->SetAllCreateFunctionsMultiphysicElem();
//Fazendo auto build
mphysics->AutoBuild();
mphysics->AdjustBoundaryElements();
mphysics->CleanUpUnconnectedNodes();
// Creating multiphysic elements into mphysics computational mesh
TPZBuildMultiphysicsMesh::AddElements(meshvec, mphysics);
TPZBuildMultiphysicsMesh::AddConnects(meshvec,mphysics);
TPZBuildMultiphysicsMesh::TransferFromMeshes(meshvec, mphysics);
return mphysics;
}
示例8: CompMesh
TPZCompMesh * CompMesh(TPZGeoMesh *gmesh, int porder)
{
/// criar materiais
int dim = gmesh->Dimension();
TPZCompMesh * cmesh = new TPZCompMesh(gmesh);
TPZMatLaplacian *material = new TPZMatLaplacian(1,dim);
// TPZAutoPointer<TPZFunction<REAL> > forcef = new TPZDummyFunction<REAL>(ForceSuave);
// material->SetForcingFunction(forcef);
TPZAutoPointer<TPZFunction<STATE> > force;
TPZDummyFunction<STATE> *dum;
dum = new TPZDummyFunction<STATE>(ForceSuave);
dum->SetPolynomialOrder(20);
force = dum;
material->SetForcingFunction(force);
TPZAutoPointer<TPZFunction<STATE> > solExata= new TPZDummyFunction<STATE>(SolSuave);
material->SetForcingFunctionExact(solExata);
TPZMaterial * mat(material);
cmesh->InsertMaterialObject(mat);
cmesh->SetDimModel(dim);
cmesh->SetDefaultOrder(porder);
///Inserir condicao de contorno
TPZFMatrix<STATE> val1(2,2,1.), val2(2,1,0.);
//BC -1
TPZMaterial * BCondD1 = material->CreateBC(mat, bc1,dirichlet, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet1 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD1->SetForcingFunction(bcmatDirichlet1);
cmesh->InsertMaterialObject(BCondD1);
//BC -2
TPZMaterial * BCondD2 = material->CreateBC(mat, bc2,dirichlet, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet2 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD2->SetForcingFunction(bcmatDirichlet2);
cmesh->InsertMaterialObject(BCondD2);
//BC -3
TPZMaterial * BCondD3 = material->CreateBC(mat, bc3,dirichlet, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet3 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD3->SetForcingFunction(bcmatDirichlet3);
cmesh->InsertMaterialObject(BCondD3);
//BC -4
TPZMaterial * BCondD4 = material->CreateBC(mat, bc4,dirichlet, val1, val2);
TPZAutoPointer<TPZFunction<REAL> > bcmatDirichlet4 = new TPZDummyFunction<REAL>(DirichletSuave);
BCondD4->SetForcingFunction(bcmatDirichlet4);
cmesh->InsertMaterialObject(BCondD4);
//Fazendo auto build
cmesh->SetAllCreateFunctionsContinuous();
cmesh->AutoBuild();
cmesh->AdjustBoundaryElements();
cmesh->CleanUpUnconnectedNodes();
return cmesh;
}
示例9: main
int TPZGeoCloneMesh::main(){
cout << "**************************************" << endl;
cout << "****** Getting Patchs!************" << endl;
cout << "**************************************" << endl;
/*******************************************************
* Constru��o da malha
* *****************************************************/
//malha quadrada de nr x nc
const int numrel = 3;
const int numcel = 3;
// int numel = numrel*numcel;
TPZVec<REAL> coord(2,0.);
// criar um objeto tipo malha geometrica
TPZGeoMesh geomesh;
// criar nos
int i,j;
for(i=0; i<(numrel+1); i++) {
for (j=0; j<(numcel+1); j++) {
int64_t nodind = geomesh.NodeVec().AllocateNewElement();
TPZVec<REAL> coord(2);
coord[0] = j;//co[nod][0];
coord[1] = i;//co[nod][1];
geomesh.NodeVec()[nodind] = TPZGeoNode(i*(numrel+1)+j,coord,geomesh);
}
}
// cria��o dos elementos
int elc, elr;
TPZGeoEl *gel[numrel*numcel];
TPZVec<int64_t> indices(4);
for(elr=0; elr<numrel; elr++) {
for(elc=0; elc<numcel; elc++) {
indices[0] = (numrel+1)*elr+elc;
indices[1] = indices[0]+1;
indices[3] = indices[0]+numrel+1;
indices[2] = indices[1]+numrel+1;
// O proprio construtor vai inserir o elemento na malha
int64_t index;
gel[elr*numrel+elc] = geomesh.CreateGeoElement(EQuadrilateral,indices,1,index);
//gel[elr*numrel+elc] = new TPZGeoElQ2d(elr*numrel+elc,indices,1,geomesh);
}
}
//Divis�o dos elementos
TPZVec<TPZGeoEl *> sub;
gel[0]->Divide(sub);
// gel[1]->Divide(sub);
// gel[3]->Divide(sub);
ofstream output("patches.dat");
geomesh.Print(output);
// TPZGeoElBC t3(gel[0],4,-1,geomesh);
// TPZGeoElBC t4(gel[numel-1],6,-2,geomesh);
geomesh.Print(output);
geomesh.BuildConnectivity();
std::set <TPZGeoEl *> patch;
TPZCompMesh *comp = new TPZCompMesh(&geomesh);
// inserir os materiais
TPZMaterial *meumat = new TPZElasticityMaterial(1,1.e5,0.2,0,0);
comp->InsertMaterialObject(meumat);
// inserir a condicao de contorno
// TPZFMatrix val1(3,3,0.),val2(3,1,0.);
// TPZMaterial *bnd = meumat->CreateBC (-1,0,val1,val2);
// comp->InsertMaterialObject(bnd);
// TPZFMatrix val3(3,3,1);
// bnd = meumat->CreateBC (-2,1,val3,val2);
// comp->InsertMaterialObject(bnd);
comp->AutoBuild();
comp->Print(output);
output.flush();
/**********************************************************************
* Cria��o de uma malha computacional clone
* ********************************************************************/
comp->GetRefPatches(patch);
geomesh.ResetReference();
TPZStack <int64_t> patchel;
TPZStack <TPZGeoEl *> toclonegel;
TPZStack <int64_t> patchindex;
TPZVec<int64_t> n2elgraph;
TPZVec<int64_t> n2elgraphid;
TPZStack<int64_t> elgraph;
TPZVec<int64_t> elgraphindex;
int64_t k;
TPZCompMesh *clonecmesh = new TPZCompMesh(&geomesh);
cout << "Check 1: number of reference elements for patch before createcompel: " << patch.size() << endl;
std::set<TPZGeoEl *>::iterator it;
for (it=patch.begin(); it!=patch.end(); it++)
{
//patch[i]->Print(cout);
int64_t index;
TPZGeoEl *gel = *it;
clonecmesh->CreateCompEl(gel, index);
// patch[i]->CreateCompEl(*clonecmesh,i);
}
// cout << "Check 2: number of reference elements for patch after createcompel: " << patch.NElements() << endl;
clonecmesh->CleanUpUnconnectedNodes();
//.........这里部分代码省略.........
示例10: BuildReferencePatch
void TPZAdaptMesh::BuildReferencePatch() {
// the fGeoRef elements are a partition of the computational domain (should be)
// create a computational element based on each reference element
TPZGeoMesh *gmesh = fReferenceCompMesh->Reference();
gmesh->ResetReference();
TPZCompMesh *tmpcmesh = new TPZCompMesh (gmesh);
int i,j;
for (i=0;i<fGeoRef.NElements();i++){
long index;
tmpcmesh->CreateCompEl(fGeoRef[i],index);
}
tmpcmesh->CleanUpUnconnectedNodes();
tmpcmesh->ExpandSolution();
TPZStack <long> patchelindex;
TPZStack <TPZGeoEl *> toclonegel;
TPZStack<long> elgraph;
TPZVec<long> n2elgraph;
TPZVec<long> n2elgraphid;
TPZVec<long> elgraphindex;
tmpcmesh->GetNodeToElGraph(n2elgraph,n2elgraphid,elgraph,elgraphindex);
// we use the node to elgraph structure to decide which elements will be included
int clnel = tmpcmesh->NElements();
// clnel corresponds to the number of patches
// fPatch and fPatchIndex form a compacted list which form the patches.
// Boundary elements will be added to each patch.
fPatchIndex.Push(0);
for (int ipatch=0; ipatch<clnel; ipatch++){
tmpcmesh->GetElementPatch(n2elgraph,n2elgraphid,elgraph,elgraphindex,ipatch,patchelindex);
for (j=0; j<patchelindex.NElements(); j++){
TPZGeoEl *gel = tmpcmesh->ElementVec()[patchelindex[j]]->Reference();
// int count = 0;
if(gel) fPatch.Push(gel);
}
int sum = fPatch.NElements();
fPatchIndex.Push(sum);
}
#ifdef DEBUG2
// CAJU TOOL
{
std::string filename("cMeshVtk.");
{
std::stringstream finalname;
finalname << filename << 0 << ".vtk";
ofstream file(finalname.str().c_str());
/** @brief Generate an output of all geometric elements that have a computational counterpart to VTK */
//static void PrintCMeshVTK(TPZGeoMesh *gmesh, std::ofstream &file, bool matColor = false);
TPZVTKGeoMesh::PrintCMeshVTK(gmesh,file,true);
}
for (int ip=0; ip<clnel; ip++) {
int firstindex = fPatchIndex[ip];
int lastindex = fPatchIndex[ip+1];
gmesh->ResetReference();
tmpcmesh->LoadReferences();
std::set<TPZGeoEl *> loaded;
for (int ind=firstindex; ind<lastindex; ind++) {
TPZGeoEl *gel = fPatch[ind];
loaded.insert(gel);
}
int ngel = gmesh->NElements();
for (int el=0; el<ngel; el++) {
TPZGeoEl *gel = gmesh->ElementVec()[el];
if (!gel) {
continue;
}
if (gel->Reference() && loaded.find(gel) == loaded.end()) {
gel->ResetReference();
}
}
std::stringstream finalname;
finalname << filename << ip+1 << ".vtk";
ofstream file(finalname.str().c_str());
/** @brief Generate an output of all geometric elements that have a computational counterpart to VTK */
//static void PrintCMeshVTK(TPZGeoMesh *gmesh, std::ofstream &file, bool matColor = false);
TPZVTKGeoMesh::PrintCMeshVTK(gmesh,file,true);
}
}
#endif
// cleaning reference to computational elements into temporary cmesh
gmesh->ResetReference();
delete tmpcmesh;
// loading references between geometric and computational meshes (originals)
fReferenceCompMesh->LoadReferences();
}