本文整理汇总了C++中TPZCompMesh::NEquations方法的典型用法代码示例。如果您正苦于以下问题:C++ TPZCompMesh::NEquations方法的具体用法?C++ TPZCompMesh::NEquations怎么用?C++ TPZCompMesh::NEquations使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TPZCompMesh
的用法示例。
在下文中一共展示了TPZCompMesh::NEquations方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main2
int main2(int argc, char *argv[])
{
#ifdef LOG4CXX
InitializePZLOG();
#endif
REAL Lx = 1.;
REAL Ly = 1.;
{// Checando funcoes
TPZVec<REAL> pto(2,0.);
TPZVec<STATE> disp(1,0.),solp(1,0.);
pto[0]=0.200935;
pto[1]=0.598129;
TPZFMatrix<STATE>flux(3,1,0.);
SolExata(pto, solp,flux);
Forcing(pto, disp);
solp.Print(std::cout);
flux.Print(std::cout);
disp.Print(std::cout);
}
// ofstream saidaerro("../ErroPoissonHdivMalhaQuad.txt",ios::app);
ofstream saidaerro("../ErroPoissonHdivMalhaTriang.txt",ios::app);
for(int p = 1; p<2; p++)
{
int pq = p;
int pp;
if(ftriang==true){
pp = pq-1;
}else{
pp = pq;
}
int ndiv;
saidaerro<<"\n CALCULO DO ERRO, COM ORDEM POLINOMIAL pq = " << pq << " e pp = "<< pp <<endl;
for (ndiv = 1; ndiv< 2; ndiv++)
{
//std::cout << "p order " << p << " number of divisions " << ndiv << std::endl;
saidaerro<<"\n<<<<<< Numero de divisoes uniforme ndiv = " << ndiv <<" >>>>>>>>>>> "<<endl;
TPZGeoMesh *gmesh = GMesh(ftriang, Lx, Ly);
ofstream arg("gmesh1.txt");
gmesh->Print(arg);
UniformRefine(gmesh, ndiv);
TPZCompMesh *cmesh1 = CMeshFlux(gmesh, pq);
TPZCompMesh *cmesh2 = CMeshPressure(gmesh, pp);
// ofstream arg1("cmeshflux.txt");
// cmesh1->Print(arg1);
//
// ofstream arg2("cmeshpressure.txt");
// cmesh2->Print(arg2);
//
// ofstream arg4("gmesh2.txt");
// gmesh->Print(arg4);
//malha multifisica
TPZVec<TPZCompMesh *> meshvec(2);
meshvec[0] = cmesh1;
meshvec[1] = cmesh2;
TPZCompMesh * mphysics = CMeshMixed(gmesh,meshvec);
std::cout << "Number of equations " << mphysics->NEquations() << std::endl;
int numthreads = 8;
std::cout << "Number of threads " << numthreads << std::endl;
TPZAnalysis an(mphysics);
SolveSyst(an, mphysics,numthreads);
// ofstream arg5("cmeshmultiphysics.txt");
// mphysics->Print(arg5);
//Calculo do erro
TPZBuildMultiphysicsMesh::TransferFromMultiPhysics(meshvec, mphysics);
TPZVec<REAL> erros;
saidaerro << "Valor de epsilone " << EPSILON << std::endl;
saidaerro << "Numero de threads " << numthreads << std::endl;
saidaerro<<" \nErro da simulacao multifisica do fluxo (q)" <<endl;
ErrorHDiv(cmesh1, saidaerro);
saidaerro<<" Erro da simulacao multifisica da pressao (p)" <<endl;
ErrorL2(cmesh2, saidaerro);
std::cout << "Postprocessed\n";
//Plot da solucao aproximada
// string plotfile("Solution_mphysics.vtk");
// PosProcessMultphysics(meshvec, mphysics, an, plotfile);
}
//.........这里部分代码省略.........
示例2: main
//.........这里部分代码省略.........
TPZBndCond *bc;
REAL big = 1.e12;
TPZFMatrix val1(6,6,0.),val2(6,1,0.);
// engastes nos lados 4 e 7 do elemento 0
TPZGeoElBC(elg[0],4,-2,*firstmesh);
TPZGeoElBC(elg[0],7,-2,*firstmesh);
// engaste no lado 4 do elemento 1
TPZGeoElBC(elg[1],4,-2,*firstmesh);
// engaste no lado 4 do elemento 2
TPZGeoElBC(elg[2],4,-2,*firstmesh);
// engaste no lado 4 do elemento 3
TPZGeoElBC(elg[3],4,-2,*firstmesh);
// imposicao do valor zero associado a condicao -2 (engaste)
bc = pl->CreateBC(-2,0,val1,val2);
secondmesh->InsertMaterialObject(bc);
// imposicao da condicao de simetria no lado 5 do elemento 4
val1(0,0)=big;
val1(1,1)=0.;
val1(2,2)=0.;
val1(3,3)=0.;
val1(4,4)=big;
val1(5,5)=big;
TPZGeoElBC(elg[3],5,-3,*firstmesh);
bc = pl->CreateBC(-3,2,val1,val2);
secondmesh->InsertMaterialObject(bc);
//ordem de interpolacao
int ord;
cout << "Entre ordem 1,2,3,4,5 : ";
cin >> ord;
// TPZCompEl::gOrder = ord;
firstmesh.SetDefaultOrder(order);
//construção malha computacional
TPZVec<int> csub(0);
TPZManVector<TPZGeoEl *> pv(4);
int n1=1,level=0;
cout << "\nDividir ate nivel ? ";
int resp;
cin >> resp;
int nelc = firstmesh->ElementVec().NElements();
int el;
TPZGeoEl *cpel;
for(el=0;el<firstmesh->ElementVec().NElements();el++) {
cpel = firstmesh->ElementVec()[el];
if(cpel && cpel->Level() < resp)
cpel->Divide(pv);
}
cout << "\nDividir o elemento esquerdo superior quantas vezes? ";
cin >> resp;
cpel = firstmesh->ElementVec()[0];
for(el=0; el<resp; el++) {
cpel->Divide(pv);
cpel = pv[3];
}
//analysis
secondmesh->AutoBuild();
firstmesh->Print(outgm1);
outgm1.flush();
secondmesh->AdjustBoundaryElements();
secondmesh->InitializeBlock();
secondmesh->Print(outcm1);
TPZAnalysis an(secondmesh,outcm1);
int numeq = secondmesh->NEquations();
secondmesh->Print(outcm1);
outcm1.flush();
TPZVec<int> skyline;
secondmesh->Skyline(skyline);
TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline);
an.SetMatrix(stiff);
an.Solver().SetDirect(ECholesky);
secondmesh->SetName("Malha Computacional : Connects e Elementos");
// Posprocessamento
an.Run(outcm2);
TPZVec<char *> scalnames(5);
scalnames[0] = "Mn1";
scalnames[1] = "Mn2";
scalnames[2] = "Vn1";
scalnames[3] = "Vn2";
scalnames[4] = "Deslocz";
TPZVec<char *> vecnames(0);
char plotfile[] = "placaPos.pos";
char pltfile[] = "placaView.plt";
an.DefineGraphMesh(2, scalnames, vecnames, plotfile);
an.Print("FEM SOLUTION ",outcm1);
an.PostProcess(3);
an.DefineGraphMesh(2, scalnames, vecnames, pltfile);
an.PostProcess(2);
firstmesh->Print(outgm1);
outgm1.flush();
delete secondmesh;
delete firstmesh;
return 0;
}
示例3: main
//.........这里部分代码省略.........
REAL big = 1.e12;
TPZFMatrix val1(6,6,0.),val2(6,1,0.);
val1(0,0)=big;
val1(1,1)=big;
val1(2,2)=big;
val1(3,3)=0.;
val1(4,4)=0.;
val1(5,5)=0.;
TPZGeoElBC(elg0,5,-2,*firstmesh);
bc = pl->CreateBC(-2,2,val1,val2);
secondmesh->InsertMaterialObject(bc);
TPZGeoElBC(elg0,6,-3,*firstmesh);
bc = pl->CreateBC(-3,2,val1,val2);
secondmesh->InsertMaterialObject(bc);
val1(0,0)=0.;
val1(1,1)=big;
val1(2,2)=0.;
val1(3,3)=big;
val1(4,4)=0.;
val1(5,5)=0.;
TPZGeoElBC(elg0,4,-1,*firstmesh);
bc = pl->CreateBC(-1,2,val1,val2);
secondmesh->InsertMaterialObject(bc);
val1(0,0)=big;
val1(1,1)=0.;
val1(2,2)=0.;
val1(3,3)=0.;
val1(4,4)=big;
val1(5,5)=0.;
TPZGeoElBC(elg0,7,-4,*firstmesh);
bc = pl->CreateBC(-4,2,val1,val2);
secondmesh->InsertMaterialObject(bc);
//ordem de interpolacao
int ord;
cout << "Entre ordem 1,2,3,4,5 : ";
cin >> ord;
// TPZCompEl::gOrder = ord;
cmesh.SetDefaultOrder(ord);
//construção malha computacional
TPZVec<int> csub(0);
TPZManVector<TPZGeoEl *> pv(4);
int n1=1,level=0;
cout << "\nDividir ate nivel ? ";
int resp;
cin >> resp;
int nelc = firstmesh->ElementVec().NElements();
int el;
TPZGeoEl *cpel;
for(el=0;el<firstmesh->ElementVec().NElements();el++) {
cpel = firstmesh->ElementVec()[el];
if(cpel && cpel->Level() < resp)
cpel->Divide(pv);
}
//analysis
secondmesh->AutoBuild();
secondmesh->AdjustBoundaryElements();
secondmesh->InitializeBlock();
secondmesh->Print(outcm1);
TPZAnalysis an(secondmesh,outcm1);
int numeq = secondmesh->NEquations();
secondmesh->Print(outcm1);
outcm1.flush();
TPZVec<int> skyline;
secondmesh->Skyline(skyline);
TPZSkylMatrix *stiff = new TPZSkylMatrix(numeq,skyline);
an.SetMatrix(stiff);
an.Solver().SetDirect(ECholesky);
secondmesh->SetName("Malha Computacional : Connects e Elementos");
// Posprocessamento
an.Run(outcm2);
TPZVec<char *> scalnames(5);
scalnames[0] = "Mn1";
scalnames[1] = "Mn2";
scalnames[2] = "Sign1";
scalnames[3] = "Sign2";
scalnames[4] = "Deslocz";
TPZVec<char *> vecnames(0);
char plotfile[] = "placaPos.pos";
char pltfile[] = "placaView.plt";
an.DefineGraphMesh(2, scalnames, vecnames, plotfile);
an.Print("FEM SOLUTION ",outcm1);
an.PostProcess(2);
an.DefineGraphMesh(2, scalnames, vecnames, pltfile);
an.PostProcess(2);
firstmesh->Print(outgm1);
outgm1.flush();
delete secondmesh;
delete firstmesh;
return 0;
}
示例4: main2
int main2()
{
#ifdef LOG4CXX
{
InitializePZLOG();
std::stringstream sout;
sout<< "Testando p adaptatividade"<<endl;
LOGPZ_DEBUG(logger, sout.str().c_str());
}
#endif
//std::ofstream erro("TaxaArcTanQuadUni.txt");
// std::ofstream erro("TaxaArcTanTriangNaoUni.txt");
//std::ofstream erro("TaxaProbJuan.txt");
//std::ofstream erro("TaxaCNMACQuadUni.txt");
// std::ofstream erro("TaxaCNMACQuadNaoUni.txt");
std::ofstream erro("TaxaCNMACTriangUni.txt");
//bool ftriang=false;
bool prefine=false;
// bool nouniform=false;//false para ref uniforme
// REAL Lx=1;
// REAL Ly=1;
//TPZGeoMesh *gmesh = GMesh(ftriang, Lx, Ly);
//UniformRefine(gmesh, 1);
//RefiningNearCircunference(2,gmesh,1,1);
//std::ofstream filemesh2("MalhaGeoIni.vtk");
//PrintGMeshVTK( gmesh, filemesh2);
// TPZGeoMesh *gmesh =GMesh(ftriang, Lx, Ly);//MalhaGeoT(h,hrefine);
TPZGeoMesh *gmesh =MalhaGeo2(1);
ofstream arg("gmeshInicial.txt");
gmesh->Print(arg);
TPZVec<REAL> calcErro;
for (int porder=1; porder<2; porder++) {
// TPZCompMesh *cmesh = CompMeshPAdap(*gmesh,porder,prefine);
// ofstream arg2("CmeshInicial.txt");
// cmesh->Print(arg2);
//
// SetDifferentOrderP(cmesh,porder);
// ofstream arg22("CmeshDifOrder.txt");
// cmesh->Print(arg22);
erro<<"ordem "<<porder <<std::endl;
for(int h=1;h<4;h++){
// erro << "NRef " << h << std::endl;
erro<<std::endl;
//1. Criacao da malha geom. e computacional
// bool hrefine=true;//true nao uniforme
// TPZGeoMesh *gmesh =MalhaGeo2(h);//MalhaGeoT(h,nouniform);//MalhaGeo(h,nouniform);//GMesh(ftriang, Lx, Ly);//MalhaGeo(h,nonuniform);
// UniformRefine(gmesh, h);
// ofstream arg3("gmeshRefinada.txt");
// gmesh->Print(arg3);
// NoUniformRefine(gmesh, h);
// std::ofstream filemesh("MalhaGeoNaoUniT.vtk");
// std::ofstream filemesh("MalhaGeoUniQCNMAC.vtk");
//std::ofstream filemesh("MalhaGeoNaoUniQCNMAC.vtk");
std::ofstream filemesh("MalhaGeo4ElCNMAC.vtk");
PrintGMeshVTK( gmesh, filemesh);
// RefiningNearCircunference(2,gmesh,h,1);
// std::ofstream filemesh2("MalhaGeoQArcTanRefeineNearCirc.vtk");
// PrintGMeshVTK( gmesh, filemesh2);
TPZCompMesh *cmesh = CompMeshPAdap(*gmesh,porder,prefine);//CompMeshPAdapJuan(*gmesh,porder,prefine);
ofstream arg2("CmeshInicial.txt");
cmesh->Print(arg2);
SetDifferentOrderPMesh4Elem(cmesh,porder);
ofstream arg22("CmeshDifOrder.txt");
cmesh->Print(arg22);
int nDofs;
nDofs=cmesh->NEquations();
erro<< "\nNRefinamento "<<h<< " NDofs "<<nDofs<<std::endl;
std::cout << "Neq = " << nDofs << std::endl;
//2. Resolve o problema
TPZAnalysis analysis(cmesh);
int numthreads = 1;
SolveSyst(analysis, cmesh, numthreads);
// SolveLU ( analysis );
//.........这里部分代码省略.........
示例5: main
int main() {
//malha geometrica
TPZGeoMesh *firstmesh = new TPZGeoMesh;
firstmesh->NodeVec().Resize(3);
TPZVec<REAL> coord(2);
coord[0] = 0.;
coord[1] = 0.;
//nos geometricos
firstmesh->NodeVec()[0].Initialize(coord,*firstmesh);
coord[0] = 1.0;
firstmesh->NodeVec()[1].Initialize(coord,*firstmesh);
coord[1] = 1.0;
firstmesh->NodeVec()[2].Initialize(coord,*firstmesh);
// coord[0] = 0.0;
// firstmesh->NodeVec()[3].Initialize(coord,*firstmesh);
TPZVec<int> nodeindexes(3);//triangulo
nodeindexes[0] = 0;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 1;
nodeindexes[2] = 2;
//elementos geometricos
TPZGeoElT2d *elq1 = new TPZGeoElT2d(nodeindexes,1,*firstmesh);
//orientacao local de um segundo elemento superposto
int i,sen;;
cout<<"Sentido local antihorario/horario : 0/1 ? ";
cin>>sen;
cout<<"Entre primeiro no = 0,1,2 : ";
cin>>i;
if(sen==0) {//direito
nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2}
nodeindexes[1] = (1+i)%3;
nodeindexes[2] = (2+i)%3;
} else {//inverso
nodeindexes[0] = (0+i)%3;//local[i] = global[j] , i,j em {0,1,2}
nodeindexes[1] = (2+i)%3;
nodeindexes[2] = (1+i)%3;
}
/* nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 2;
nodeindexes[2] = 3;*/
TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh);//segundo elemento superposto ao primeiro
/* coord[1] = 0.0;
coord[0] = 2.0;
firstmesh->NodeVec()[4].Initialize(coord,*firstmesh);
coord[1] = 1.0;
firstmesh->NodeVec()[5].Initialize(coord,*firstmesh);
nodeindexes[0] = 1;//local[i] = global[i] , i=0,1,2,3
nodeindexes[1] = 4;
nodeindexes[2] = 5;
nodeindexes[3] = 2;
TPZGeoElT2d *elq2 = new TPZGeoElT2d(nodeindexes,1,*firstmesh); */
//Arquivos de saida
ofstream outgm1("outgm1.dat");
ofstream outcm1("outcm1.dat");
ofstream outcm2("outcm2.dat");
//montagem de conectividades entre elementos
firstmesh->BuildConnectivity();
firstmesh->Print(outgm1);
outgm1.flush();
//teste de divisao geometrica : 1 elemento
TPZVec<TPZGeoEl *> vecsub,vecsub1;
elq1->Divide(vecsub);//divide 0
elq2->Divide(vecsub);//divide 1
/* vecsub[2]->Divide(vecsub1);//
vecsub1[3]->Divide(vecsub1);
vecsub[0]->Divide(vecsub1);//divide 1
vecsub1[2]->Divide(vecsub1); */
firstmesh->Print(outgm1);
outgm1.flush();
//malha computacional
TPZCompMesh *secondmesh = new TPZCompMesh(firstmesh);
//material
int matindex = secondmesh->MaterialVec().AllocateNewElement();
TPZFMatrix k(1,1,1.),f(1,1,0.),c(1,2,1.);
TPZMat2dLin * mat = new TPZMat2dLin(1);
mat->SetMaterial(k,c,f);
//mat->SetForcingFunction(force);
mat->SetForcingFunction(derivforce);
secondmesh->MaterialVec()[matindex] = mat;
//CC : condicao de contorno
//ordem de interpolacao
// TPZCompEl::gOrder = 3;
cmesh.SetDefaultOrder(3);
//constroe a malha computacional
secondmesh->AutoBuild();
secondmesh->InitializeBlock();
secondmesh->ComputeConnectSequence();
secondmesh->Print(outcm1);
outcm1.flush();
//Resolucao do sistema
TPZFMatrix Rhs(secondmesh->NEquations(),1),Stiff(secondmesh->NEquations(),secondmesh->NEquations()),U;
Stiff.Zero();
Rhs.Zero();
secondmesh->Assemble(Stiff,Rhs);
Rhs.Print("Rhs teste",outcm2);
Stiff.Print("Bloco teste",outcm2);
Rhs.Print("Computational Mesh -> fBlock",outcm2);
TPZMatrixSolver solver(&Stiff);
solver.SetDirect(ELU);
solver.Solve(Rhs,U);
//.........这里部分代码省略.........