本文整理汇总了C++中TFltV::PutAll方法的典型用法代码示例。如果您正苦于以下问题:C++ TFltV::PutAll方法的具体用法?C++ TFltV::PutAll怎么用?C++ TFltV::PutAll使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TFltV
的用法示例。
在下文中一共展示了TFltV::PutAll方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ConjugGrad
static void ConjugGrad(const TMatrix& Matrix, const TFltV& b, TFltV& x,
const int& CGMxIter, const double& RelErr, const TFltV& x0) {
// prepare start vector
x.Gen(Matrix.GetCols());
if (x0.Empty()) { x.PutAll(0.0); }
else { x = x0; }
// do the magic
}
示例2: IRLS
void TLogReg::IRLS(const TMatrix& Matrix, TFltV& y, TFltV& bb,
const double& ChangeEps, const int& MaxStep, const int& Verb) {
IAssert(Matrix.GetCols() == y.Len());
int M = Matrix.GetRows(), R = Matrix.GetCols(), i;
if (bb.Len() != M+1) { bb.Gen(M+1); bb.PutAll(0.0); }
TFltV mu(R), w(R), z(R), delta;
// adjust y
for (i = 0; i < R; i++) {
if (y[i] >= 1.0)
y[i] = 0.999;
else if (y[i] <= 0.0)
y[i] = 0.001;
}
//const double eps = 0.01;
double NewDEV = 0.0, OldDEV = -100.0;
forever {
Matrix.MultiplyT(bb, z);
for (i = 0; i < R; i++) {
z[i] += bb[M];
// evaluate current model
mu[i] = 1/(1 + exp(-z[i]));
// calculate weights
w[i] = mu[i] * (1 - mu[i]);
// calculate adjusted dependent variables
z[i] += (y[i] - mu[i]) / w[i];
}
// get new aproximation for bb
CG(Matrix, w, z, bb, MaxStep, Verb);
// calculate deviance (error measurement)
NewDEV = 0.0;
for (i = 0; i < R; i++) {
double yi = y[i], mui = mu[i];
NewDEV += yi*log(yi / mui) + (1 - yi)*log((1 - yi)/(1 - mui));
}
if (Verb == 1) printf(" -> %.5f\n", NewDEV);
else if (Verb > 1) printf("NewDEV = %.5f\n", NewDEV);
// do we stop?
if (fabs(NewDEV - OldDEV) < ChangeEps) break;
OldDEV = NewDEV;
}
}
示例3: CG
///////////////////////////////////////////////////////////////////////
// Fast-Robust-Logistic-Regression
void TLogReg::CG(const TMatrix& Matrix, const TFltV& w, const TFltV& b,
TFltV& x, const int& MaxStep, const int& Verb) { // x == bb, b == z
int M = x.Len(), R = b.Len(), i;
TFltV r(M), p(M), q(M), tmp(R);
x.PutAll(0.0);
// calculate right side of system
for (i = 0; i < R; i++) tmp[i] = w[i] * b[i];
Matrix.Multiply(tmp, r); r[M-1] = TLAMisc::SumVec(tmp);
double nro, ro, alpha, beta;
const double eps = 0.000001;
// conjugate gradient method - CG
// from "Templates for the soltuion of linear systems" (M == eye)
ro = nro = TLinAlg::Norm2(r); int StepN=0;
for (int k = 1; k <= MaxStep && nro > eps && k <= M; k++) {
if ((Verb > 1) && (k%10 == 0)) printf(".");
if (k == 1) {
p = r;
} else {
beta = nro / ro;
for (i = 0; i < M; i++)
p[i] = r[i] + beta*p[i];
}
// q = A*p = (X'*W*X)*p = (Matrix*W*Matrix')*p
Matrix.MultiplyT(p, tmp);
for (i = 0; i < R; i++) tmp[i] = (tmp[i] + p[M-1]) * w[i];
Matrix.Multiply(tmp, q); q[M-1] = TLAMisc::SumVec(tmp);
// calcualte new x and residual
alpha = nro / TLinAlg::DotProduct(p, q);
for (i = 0; i < M; i++) {
x[i] = x[i] + alpha * p[i];
r[i] = r[i] - alpha * q[i];
}
ro = nro;
nro = TLinAlg::Norm2(r);
StepN=k;
}
if (Verb > 1) printf("\nnorm(r) = %.5f at k = %d\n", nro, StepN-1);
}