当前位置: 首页>>代码示例>>C++>>正文


C++ TFltV类代码示例

本文整理汇总了C++中TFltV的典型用法代码示例。如果您正苦于以下问题:C++ TFltV类的具体用法?C++ TFltV怎么用?C++ TFltV使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了TFltV类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: AddFtr

void TMultinomial::AddFtr(const TStrV& StrV, const TFltV& FltV, TIntFltKdV& SpV) const {
    // make sure we either do not have explicit values, or their dimension matches with string keys
    EAssertR(FltV.Empty() || (StrV.Len() == FltV.Len()), "TMultinomial::AddFtr:: String and double values not aligned");
    // generate internal feature vector
    SpV.Gen(StrV.Len(), 0);
    for (int StrN = 0; StrN < StrV.Len(); StrN++) {
        const int FtrId = FtrGen.GetFtr(StrV[StrN]);
        // only use features we've seen during updates
        if (FtrId != -1) {
            const double Val = FltV.Empty() ? 1.0 : FltV[StrN].Val;
            if (Val > 1e-16) { SpV.Add(TIntFltKd(FtrId, Val)); }
        }
    }
    SpV.Sort();
    // merge elements with the same id
    int GoodSpN = 0;
    for (int SpN = 1; SpN < SpV.Len(); SpN++) {
        if (SpV[GoodSpN].Key == SpV[SpN].Key) {
            // repetition of previous id, sum counts
            SpV[GoodSpN].Dat += SpV[SpN].Dat;
        } else {
            // increase the pointer to the next good position
            GoodSpN++;
            // and move the new value down to the good position
            SpV[GoodSpN] = SpV[SpN];
        }
    }
    // truncate the vector
    SpV.Trunc(GoodSpN + 1);
    // replace values with 1 if needed
    if (IsBinary()) { for (TIntFltKd& Sp : SpV) { Sp.Dat = 1.0; } }
    // final normalization, if needed
    if (IsNormalize()) { TLinAlg::Normalize(SpV); }    
}
开发者ID:joaopitacosta,项目名称:qminer,代码行数:34,代码来源:ftrgen.cpp

示例2: Correct

TFltV KalmanFilter::Correct(TFltV measurement) {
	// temp2 = H * P'(k)
	TLinAlg::Multiply(measurementMatrix, errorCovPre, temp2VV);

	// temp3 = temp2 * Ht + R
	TLinAlg::Gemm(1.0, temp2VV, measurementMatrix, 1.0, measurementNoiseCov, temp3VV, TLinAlg::GEMM_B_T);

	// temp4 = inv(temp3) * temp2 = Kt(k)
	TLinAlg::Inverse(temp3VV, itemp3VV, TLinAlg::DECOMP_SVD);
	TLinAlg::Multiply(itemp3VV, temp2VV, temp4VV);

	// K(k)
	TLinAlg::Transpose(temp4VV, gain);

	// temp2V = z(k) - H*x'(k)
	temp1V.Gen(1, 1);
	TLinAlg::Multiply(measurementMatrix, statePre, temp1V);
	temp2V.Gen(measurement.Len(), measurement.Len());
	TLinAlg::AddVec(-1.0, temp1V, measurement, temp2V);

	// x(k) = x'(k) + K(k) * temp2V
	temp1V.Gen(gain.GetRows(), gain.GetRows());
	TLinAlg::Multiply(gain, temp2V, temp1V);
	TLinAlg::AddVec(1.0, statePre, temp1V, statePost);

	// P(k) = P'(k) - K(k) * temp2
	TLinAlg::Gemm(-1.0, gain, temp2VV, 1.0, errorCovPre, errorCovPost, TLinAlg::GEMM_NO_T);

	// return statePost
	return statePost;
}
开发者ID:klemenkenda,项目名称:NRG4Cast,代码行数:31,代码来源:kalman.cpp

示例3: GetEigVec

// to get first few eigenvectors
void GetEigVec(const PUNGraph& Graph, const int& EigVecs, TFltV& EigValV, TVec<TFltV>& EigVecV) {
  const int Nodes = Graph->GetNodes();
  // Lanczos
  TUNGraphMtx GraphMtx(Graph);
  int CalcVals = int(2*EigVecs);
  if (CalcVals > Nodes) { CalcVals = Nodes; }
  TFltVV EigVecVV;
  //while (EigValV.Len() < EigVecs && CalcVals < 10*EigVecs) {
  try {
    TSparseSVD::Lanczos(GraphMtx, EigVecs, 2*EigVecs, ssotFull, EigValV, EigVecVV, false); }
  catch(...) {
    printf("\n  ***EXCEPTION:  TRIED %d GOT %d values** \n", CalcVals, EigValV.Len()); }
  if (EigValV.Len() < EigVecs) {
    printf("  ***TRIED %d GOT %d values** \n", CalcVals, EigValV.Len()); }
  //  CalcVals += EigVecs;
  //}
  TFltIntPrV EigValIdV;
  for (int i = 0; i < EigValV.Len(); i++) {
    EigValIdV.Add(TFltIntPr(EigValV[i], i)); 
  }
  EigValIdV.Sort(false);
  EigValV.Sort(false);
  for (int v = 0; v < EigValIdV.Len(); v++) { // vector components are not sorted!!!
    EigVecV.Add();
    EigVecVV.GetCol(EigValIdV[v].Val2, EigVecV.Last());
  }
  IsAllValVNeg(EigVecV[0], true);
}
开发者ID:Networks-Learning,项目名称:infopath,代码行数:29,代码来源:gsvd.cpp

示例4: Update

/////////////////////////////////////////////////
// Online Moving Standard M2 
void TVar::Update(const double& InVal, const uint64& InTmMSecs, 
        const TFltV& OutValV, const TUInt64V& OutTmMSecsV, const int& N) {
		
    pNo = N;
    int tempN = N - 1 + OutValV.Len();
    double delta;    
    
	// check if all the values are removed	
	if (OutValV.Len() >= tempN) {
		Ma = 0;
		M2 = 0;
		tempN = 0;
	} else {
		// remove old values from the mean
		for (int ValN = 0; ValN < OutValV.Len(); ValN++)
		{
			tempN--;			
			delta = OutValV[ValN] - Ma;
			Ma = Ma - delta / tempN;
			M2 = M2 - delta * (OutValV[ValN] - Ma);
		}
	}

    //add the new value to the resulting mean    
    delta = InVal - Ma;
    Ma = Ma + delta/N;
    M2 = M2 + delta * (InVal - Ma);
    TmMSecs = InTmMSecs;
}
开发者ID:amrsobhy,项目名称:qminer,代码行数:31,代码来源:signalproc.cpp

示例5: TEST

TEST(TSlottedHistogramTest, Simple2) {
    try {
        TQm::TStreamAggrs::PSlottedHistogram obj = TQm::TStreamAggrs::TSlottedHistogram::New(20, 5, 3);

        obj->Add(1, 0); // slot 0
        obj->Add(7, 0); // slot 1
        obj->Add(12, 1); // slot 2
        obj->Add(18, 0); // slot 3
        obj->Add(22, 1); // slot 0
        obj->Add(38, 0); // slot 3

        TFltV Stats;
        obj->GetStats(41, 45, Stats); // slots from 0 to 1 inclusive

        ASSERT_EQ(Stats.Len(), 3);
        ASSERT_EQ(Stats[0], 2.0);
        ASSERT_EQ(Stats[1], 1.0);
        ASSERT_EQ(Stats[2], 0.0);

        obj->GetStats(45, 47, Stats); // slots from 1 to 1 inclusive

        ASSERT_EQ(Stats.Len(), 3);
        ASSERT_EQ(Stats[0], 1.0);
        ASSERT_EQ(Stats[1], 0.0);
        ASSERT_EQ(Stats[2], 0.0);

    } catch (PExcept& Except) {
        printf("Error: %s", Except->GetStr());
        throw Except;
    }
}
开发者ID:gitter-badger,项目名称:qminer,代码行数:31,代码来源:test-aggr.cpp

示例6: GetResults

void TNNet::GetResults(TFltV& ResultV) const{
    ResultV.Clr(true, -1);

    for(int NeuronN = 0; NeuronN < LayerV.Last().GetNeuronN() - 1; ++NeuronN){
        ResultV.Add(LayerV.Last().GetOutVal(NeuronN));
    }
}
开发者ID:amrsobhy,项目名称:qminer,代码行数:7,代码来源:signalproc.cpp

示例7: main

int main() {
  TLSHash LSH(7, 7, DIM, TLSHash::EUCLIDEAN);
  LSH.Init();

  TRnd Gen;
  Gen.Randomize();

  TVec<TFltV> DataV;
  for (int i=0; i<1000000; i++) {
    TFltV Datum;
    for (int j=0; j<3; j++) {
      Datum.Add(Gen.GetUniDev()*2100);
    }
    DataV.Add(Datum);
  }
  LSH.AddV(DataV);
  
  TVec<TPair<TFltV, TFltV> > NeighborsV = LSH.GetAllCandidatePairs();
  printf("Number of Candidates: %d\n", NeighborsV.Len());

  NeighborsV = LSH.GetAllNearPairs();
  printf("Number of Close Pairs: %d\n", NeighborsV.Len());
  for (int i=0; i<NeighborsV.Len(); i++) {
    outputPoint(NeighborsV[i].GetVal1());
    printf(" ");
    outputPoint(NeighborsV[i].GetVal2());
    printf("\n");
  }
  return 0;
}
开发者ID:BestSean2016,项目名称:snap,代码行数:30,代码来源:lshtest.cpp

示例8: ToStr

void TStrFeatureSpace::ToStr(const TFltV& FeatureIds, TChA& ChA, int k, char Sep) const {
	TIntSet TakenIndexes(k);
	int Len = TMath::Mn(FeatureIds.Len(), k);
	for (int i = 0; i < Len; i++) {
		double MxVal = TFlt::Mn;
		int MxIndex = 0;
		for (int j = 0; j < FeatureIds.Len(); j++) {
			const TFlt& FeatureVal = FeatureIds[j];
			if (FeatureVal > MxVal) {
				if (!TakenIndexes.IsKey(j)) {
					MxVal = FeatureVal;
					MxIndex = j;
				}
			}
		}
		TakenIndexes.AddKey(MxIndex);

		ChA += ISpace.KeyFromOfs(Space[MxIndex]);
		ChA += ':';
		ChA += TFlt::GetStr(MxVal, "%2.6f");;
		if (i < Len) {
			ChA += Sep;
		}
	}
}
开发者ID:simp1eton,项目名称:snap-social,代码行数:25,代码来源:strftrspace.cpp

示例9: GetEigVals

void GetEigVals(const PUNGraph& Graph, const int& EigVals, TFltV& EigValV) {
  // Lanczos
  TUNGraphMtx GraphMtx(Graph);
  //const int Nodes = Graph->GetNodes();
  //int CalcVals = int(2*EigVals);
  //if (CalcVals > Nodes) { CalcVals = Nodes; }
  //while (EigValV.Len() < EigVals && CalcVals < 3*EigVals) {
  try {
    if (EigVals > 4) { 
      TSparseSVD::SimpleLanczos(GraphMtx, 2*EigVals, EigValV, false); }
    else { TFltVV EigVecVV; // this is much more precise, but also much slower
      TSparseSVD::Lanczos(GraphMtx, EigVals, 3*EigVals, ssotFull, EigValV, EigVecVV, false); }
  }
  catch(...) {
    printf("\n  ***EXCEPTION:  TRIED %d GOT %d values** \n", 2*EigVals, EigValV.Len()); }
  if (EigValV.Len() < EigVals) {
    printf("  ***TRIED %d GOT %d values** \n", 2*EigVals, EigValV.Len()); }
  //  CalcVals += EigVals;
  //}
  EigValV.Sort(false);
  /*if (EigValV.Len() > EigVals) {
    EigValV.Del(EigVals, EigValV.Len()-1); }
  else {
    while (EigValV.Len() < EigVals) EigValV.Add(1e-6); 
  }
  IAssert(EigValV.Len() == EigVals);*/
}
开发者ID:Networks-Learning,项目名称:infopath,代码行数:27,代码来源:gsvd.cpp

示例10: Likelihood

double TAGMFit::Likelihood(const TFltV& NewLambdaV, double& LEdges, double& LNoEdges) {
  IAssert(CIDNSetV.Len() == NewLambdaV.Len());
  IAssert(ComEdgesV.Len() == CIDNSetV.Len());
  LEdges = 0.0; LNoEdges = 0.0;
  for (int e = 0; e < EdgeComVH.Len(); e++) {
    TIntSet& JointCom = EdgeComVH[e];
    double LambdaSum = SelectLambdaSum(NewLambdaV, JointCom);
    double Puv = 1 - exp(- LambdaSum);
    if (JointCom.Len() == 0) {  Puv = PNoCom;  }
    IAssert(! _isnan(log(Puv)));
    LEdges += log(Puv);
  }
  for (int k = 0; k < NewLambdaV.Len(); k++) {
    int MaxEk = CIDNSetV[k].Len() * (CIDNSetV[k].Len() - 1) / 2;
    int NotEdgesInCom = MaxEk - ComEdgesV[k];
    if(NotEdgesInCom > 0) {
      if (LNoEdges >= TFlt::Mn + double(NotEdgesInCom) * NewLambdaV[k]) { 
        LNoEdges -= double(NotEdgesInCom) * NewLambdaV[k];
      }
    }
  }
  double LReg = 0.0;
  if (RegCoef > 0.0) {
    LReg = - RegCoef * TLinAlg::SumVec(NewLambdaV);
  }
  return LEdges + LNoEdges + LReg;
}
开发者ID:RoyZhengGao,项目名称:CommunityEvaluation,代码行数:27,代码来源:agmfit.cpp

示例11: TestEigSvd

void TestEigSvd() {
  PNGraph G = TSnap::GenRndGnm<PNGraph>(100,1000, true);
  PUNGraph UG = TSnap::ConvertGraph<PUNGraph>(G);

  TSnap::SaveMatlabSparseMtx(G, "test1.mtx");
  TSnap::SaveMatlabSparseMtx(UG, "test2.mtx");

  TFltV SngValV; TVec<TFltV> LeftV, RightV;
  TSnap::GetSngVec(G, 20, SngValV, LeftV, RightV);
  printf("Singular Values:\n");
  for (int i =0; i < SngValV.Len(); i++) {
    printf("%d\t%f\n", i, SngValV[i]()); }
  printf("LEFT Singular Vectors:\n");
  for (int i=0; i < LeftV[0].Len(); i++) {
    printf("%d\t%f\t%f\t%f\t%f\t%f\n", i, LeftV[0][i](), LeftV[1][i](), LeftV[2][i](), LeftV[3][i](), LeftV[4][i]());
  }
  printf("RIGHT Singular Vectors:\n");
  for (int i=0; i < RightV[0].Len(); i++) {
    printf("%d\t%f\t%f\t%f\t%f\t%f\n", i, RightV[0][i](), RightV[1][i](), RightV[2][i](), RightV[3][i](), RightV[4][i]());
  }
  TFltV EigValV;
  TVec<TFltV> EigV;
  TSnap::GetEigVec(UG, 20, EigValV, EigV);
  printf("Eigen Values:\n");
  for (int i =0; i < EigValV.Len(); i++) {
    printf("%d\t%f\n", i, EigValV[i]()); }
  printf("Eigen Vectors %d:\n", EigV.Len());
  for (int i =0; i < EigV[0].Len(); i++) {
    printf("%d\t%f\t%f\t%f\t%f\t%f\n", i, EigV[0][i](), EigV[1][i](), EigV[2][i](), EigV[3][i](), EigV[4][i]());
  }

}
开发者ID:margotduek,项目名称:AnalisisDisenioDeAlgoritmos,代码行数:32,代码来源:testgraph.cpp

示例12: AddPlot

int TGnuPlot::AddPlot(const TFltV& YValV, const TGpSeriesTy& SeriesTy, const TStr& Label, const TStr& Style) {
  TFltKdV XYValV(YValV.Len(), 0);
  for (int i = 0; i < YValV.Len(); i++) {
    XYValV.Add(TFltKd(TFlt(i+1), TFlt(YValV[i])));
  }
  return AddPlot(XYValV, SeriesTy, Label, Style);
}
开发者ID:mkrnc,项目名称:snap,代码行数:7,代码来源:gnuplot.cpp

示例13: GetSngVec

void GetSngVec(const PNGraph& Graph, TFltV& LeftSV, TFltV& RightSV) {
  const int Nodes = Graph->GetNodes();
  TFltVV LSingV, RSingV;
  TFltV SngValV;
  if (Nodes < 500) {
    // perform full SVD
    TFltVV AdjMtx(Nodes+1, Nodes+1);
    TIntH NodeIdH;
    // create adjecency matrix
    for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
      NodeIdH.AddKey(NodeI.GetId()); }
    for (TNGraph::TNodeI NodeI = Graph->BegNI(); NodeI < Graph->EndNI(); NodeI++) {
      const int NodeId = NodeIdH.GetKeyId(NodeI.GetId()) + 1;
      for (int e = 0; e < NodeI.GetOutDeg(); e++) {
        const int DstNId = NodeIdH.GetKeyId(NodeI.GetOutNId(e)) + 1;  // no self edges
        if (NodeId != DstNId) AdjMtx.At(NodeId, DstNId) = 1;
      }
    }
    try { // can fail to converge but results seem to be good
      TSvd::Svd1Based(AdjMtx, LSingV, SngValV, RSingV); }
    catch(...) {
      printf("\n***No SVD convergence: G(%d, %d)\n", Nodes, Graph->GetEdges()); }
  } else { // Lanczos
    TNGraphMtx GraphMtx(Graph);
    TSparseSVD::LanczosSVD(GraphMtx, 1, 8, ssotFull, SngValV, LSingV, RSingV);
  }
  TFlt MxSngVal = TFlt::Mn;
  int ValN = 0;
  for (int i = 0; i < SngValV.Len(); i++) {
    if (MxSngVal < SngValV[i]) { MxSngVal = SngValV[i]; ValN = i; } }
  LSingV.GetCol(ValN, LeftSV);
  RSingV.GetCol(ValN, RightSV);
  IsAllValVNeg(LeftSV, true);
  IsAllValVNeg(RightSV, true);
}
开发者ID:Networks-Learning,项目名称:infopath,代码行数:35,代码来源:gsvd.cpp

示例14: IAssert

void TEpidemModel::RungeKutta(const TFltV& y, const TFltV& dydx, double x, double h, TFltV& SirOutV) {
  const int n = y.Len();
  IAssert(y.Len() == n && dydx.Len() == n);
  TFltV dym(n), dyt(n), yt(n);
  int i;
  double hh=h*0.5;
  double h6=h/6.0;
  double xh=x+hh;
  for (i=0; i < n; i++) {
    yt[i]=y[i]+hh*dydx[i];
  }
  GetDerivs(xh, yt, dyt);
  for (i=0; i<n; i++) {
    yt[i]=y[i]+hh*dyt[i];
  }
  GetDerivs(xh,yt,dym);
  for (i=0; i<n; i++) {
	  yt[i]=y[i]+h*dym[i];
	  dym[i] += dyt[i];
  }
  GetDerivs(x+h,yt,dyt);
  SirOutV.Clr(false);  
  for (i=0; i<n; i++) {
    SirOutV.Add(y[i]+h6 * (dydx[i]+dyt[i]+2.0*dym[i]));
  }
}
开发者ID:Aleyasen,项目名称:Alaki,代码行数:26,代码来源:sir.cpp

示例15: PlotSngValRank

void PlotSngValRank(const PNGraph& Graph, const int& SngVals, const TStr& FNmPref, TStr DescStr) {
  TFltV SngValV;
  TSnap::GetSngVals(Graph, SngVals, SngValV);
  SngValV.Sort(false);
  if (DescStr.Empty()) { DescStr = FNmPref; }
  TGnuPlot::PlotValV(SngValV, "sngVal."+FNmPref, TStr::Fmt("%s. G(%d, %d). Largest eig val = %f",
    DescStr.CStr(), Graph->GetNodes(), Graph->GetEdges(), SngValV[0].Val), "Rank", "Singular value", gpsLog10XY, false, gpwLinesPoints);
}
开发者ID:Accio,项目名称:snap,代码行数:8,代码来源:statplot.cpp


注:本文中的TFltV类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。