本文整理汇总了C++中TFltV::Gen方法的典型用法代码示例。如果您正苦于以下问题:C++ TFltV::Gen方法的具体用法?C++ TFltV::Gen怎么用?C++ TFltV::Gen使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TFltV
的用法示例。
在下文中一共展示了TFltV::Gen方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetIDFWeightV
void TStrParser::GetIDFWeightV(TFltV& WeightV) {
int AlphN = GetAlphabetSize();
WeightV.Gen(AlphN);
for (int AlphC = 0; AlphC < AlphN; AlphC++)
WeightV[AlphC] = log((double)DocsParsed / WordToIdH[AlphC]);
double MaxVal = WeightV[WeightV.GetMxValN()];
for (int AlphC = 0; AlphC < AlphN; AlphC++)
WeightV[AlphC] /= MaxVal;
}
示例2: GetDual
void TBowLinAlg::GetDual(const PBowDocWgtBs& X,
const TFltV& x, TFltV& y, const int& _Docs) {
const int Docs = (_Docs == -1) ? X->GetDocs() : _Docs;
y.Gen(Docs, 0); // prepare space
for (int DId = 0; DId < Docs; DId++) {
y.Add(TBowLinAlg::DotProduct(x, X->GetSpV(DId)));
}
}
示例3: ConjugGrad
static void ConjugGrad(const TMatrix& Matrix, const TFltV& b, TFltV& x,
const int& CGMxIter, const double& RelErr, const TFltV& x0) {
// prepare start vector
x.Gen(Matrix.GetCols());
if (x0.Empty()) { x.PutAll(0.0); }
else { x = x0; }
// do the magic
}
示例4: GetSphereDev
/// Sample random point from the surface of a Dim-dimensional unit sphere.
void GetSphereDev(const int& Dim, TRnd& Rnd, TFltV& ValV) {
if (ValV.Len() != Dim) { ValV.Gen(Dim); }
double Length = 0.0;
for (int i = 0; i < Dim; i++) {
ValV[i] = Rnd.GetNrmDev();
Length += TMath::Sqr(ValV[i]); }
Length = 1.0 / sqrt(Length);
for (int i = 0; i < Dim; i++) {
ValV[i] *= Length;
}
}
示例5: Gradient
void TLogRegFit::Gradient(TFltV& GradV) {
TFltV OutV;
TLogRegPredict::GetCfy(X, OutV, Theta);
GradV.Gen(M);
for (int r = 0; r < X.Len(); r++) {
//printf("Y[%d] = %f, Out[%d] = %f\n", r, Y[r].Val, r, OutV[r].Val);
for (int m = 0; m < M; m++) {
GradV[m] += (Y[r] - OutV[r]) * X[r][m];
}
}
//for (int m = 0; m < M; m++) { printf("Theta[%d] = %f, GradV[%d] = %f\n", m, Theta[m].Val, m, GradV[m].Val); }
}
示例6: TMatrix
TBowMatrix::TBowMatrix(PBowDocBs BowDocBs, PBowDocWgtBs BowDocWgtBs,
const TStr& CatNm, const TIntV& DIdV, TFltV& ClsV): TMatrix() {
RowN = BowDocBs->GetWords();
ClsV.Gen(DIdV.Len(), 0);
ColSpVV.Gen(DIdV.Len(), 0);
IAssert(BowDocBs->IsCatNm(CatNm));
int CatId = BowDocBs->GetCId(CatNm);
for (int i = 0; i < DIdV.Len(); i++) {
ColSpVV.Add(BowDocWgtBs->GetSpV(DIdV[i]));
ClsV.Add(BowDocBs->IsCatInDoc(DIdV[i], CatId) ? 0.99 : -0.99);
}
}
示例7: LikelihoodForRow
double TAGMFast::LikelihoodForRow(const int UID, const TIntFltH& FU) {
double L = 0.0;
TFltV HOSumFV; //adjust for Fv of v hold out
if (HOVIDSV[UID].Len() > 0) {
HOSumFV.Gen(SumFV.Len());
for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
for (int c = 0; c < SumFV.Len(); c++) {
HOSumFV[c] += GetCom(HOVIDSV[UID][e], c);
}
}
}
TUNGraph::TNodeI NI = G->GetNI(UID);
if (DoParallel && NI.GetDeg() > 10) {
#pragma omp parallel for schedule(static, 1)
for (int e = 0; e < NI.GetDeg(); e++) {
int v = NI.GetNbrNId(e);
if (v == UID) { continue; }
if (HOVIDSV[UID].IsKey(v)) { continue; }
double LU = log (1.0 - Prediction(FU, F[v])) + NegWgt * DotProduct(FU, F[v]);
#pragma omp atomic
L += LU;
}
for (TIntFltH::TIter HI = FU.BegI(); HI < FU.EndI(); HI++) {
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[HI.GetKey()].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
double LU = NegWgt * (SumFV[HI.GetKey()] - HOSum - GetCom(UID, HI.GetKey())) * HI.GetDat();
L -= LU;
}
} else {
for (int e = 0; e < NI.GetDeg(); e++) {
int v = NI.GetNbrNId(e);
if (v == UID) { continue; }
if (HOVIDSV[UID].IsKey(v)) { continue; }
L += log (1.0 - Prediction(FU, F[v])) + NegWgt * DotProduct(FU, F[v]);
}
for (TIntFltH::TIter HI = FU.BegI(); HI < FU.EndI(); HI++) {
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[HI.GetKey()].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
L -= NegWgt * (SumFV[HI.GetKey()] - HOSum - GetCom(UID, HI.GetKey())) * HI.GetDat();
}
}
//add regularization
if (RegCoef > 0.0) { //L1
L -= RegCoef * Sum(FU);
}
if (RegCoef < 0.0) { //L2
L += RegCoef * Norm2(FU);
}
return L;
}
示例8: IRLS
void TLogReg::IRLS(const TMatrix& Matrix, TFltV& y, TFltV& bb,
const double& ChangeEps, const int& MaxStep, const int& Verb) {
IAssert(Matrix.GetCols() == y.Len());
int M = Matrix.GetRows(), R = Matrix.GetCols(), i;
if (bb.Len() != M+1) { bb.Gen(M+1); bb.PutAll(0.0); }
TFltV mu(R), w(R), z(R), delta;
// adjust y
for (i = 0; i < R; i++) {
if (y[i] >= 1.0)
y[i] = 0.999;
else if (y[i] <= 0.0)
y[i] = 0.001;
}
//const double eps = 0.01;
double NewDEV = 0.0, OldDEV = -100.0;
forever {
Matrix.MultiplyT(bb, z);
for (i = 0; i < R; i++) {
z[i] += bb[M];
// evaluate current model
mu[i] = 1/(1 + exp(-z[i]));
// calculate weights
w[i] = mu[i] * (1 - mu[i]);
// calculate adjusted dependent variables
z[i] += (y[i] - mu[i]) / w[i];
}
// get new aproximation for bb
CG(Matrix, w, z, bb, MaxStep, Verb);
// calculate deviance (error measurement)
NewDEV = 0.0;
for (i = 0; i < R; i++) {
double yi = y[i], mui = mu[i];
NewDEV += yi*log(yi / mui) + (1 - yi)*log((1 - yi)/(1 - mui));
}
if (Verb == 1) printf(" -> %.5f\n", NewDEV);
else if (Verb > 1) printf("NewDEV = %.5f\n", NewDEV);
// do we stop?
if (fabs(NewDEV - OldDEV) < ChangeEps) break;
OldDEV = NewDEV;
}
}
示例9: GradLogLForLambda
// Gradient of likelihood for P_c.
void TAGMFit::GradLogLForLambda(TFltV& GradV) {
GradV.Gen(LambdaV.Len());
TFltV SumEdgeProbsV(LambdaV.Len());
for (int e = 0; e < EdgeComVH.Len(); e++) {
TIntSet& JointCom = EdgeComVH[e];
double LambdaSum = SelectLambdaSum(JointCom);
double Puv = 1 - exp(- LambdaSum);
if (JointCom.Len() == 0) { Puv = PNoCom; }
for (TIntSet::TIter SI = JointCom.BegI(); SI < JointCom.EndI(); SI++) {
SumEdgeProbsV[SI.GetKey()] += (1 - Puv) / Puv;
}
}
for (int k = 0; k < LambdaV.Len(); k++) {
int MaxEk = CIDNSetV[k].Len() * (CIDNSetV[k].Len() - 1) / 2;
int NotEdgesInCom = MaxEk - ComEdgesV[k];
GradV[k] = SumEdgeProbsV[k] - (double) NotEdgesInCom;
if (LambdaV[k] > 0.0 && RegCoef > 0.0) { //if regularization exists
GradV[k] -= RegCoef;
}
}
}
示例10: GetCmtyVV
void TAGMFit::GetCmtyVV(TVec<TIntV>& CmtyVV, TFltV& QV, const double QMax) {
CmtyVV.Gen(CIDNSetV.Len(), 0);
QV.Gen(CIDNSetV.Len(), 0);
TIntFltH CIDLambdaH(CIDNSetV.Len());
for (int c = 0; c < CIDNSetV.Len(); c++) {
CIDLambdaH.AddDat(c, LambdaV[c]);
}
CIDLambdaH.SortByDat(false);
for (int c = 0; c < CIDNSetV.Len(); c++) {
int CID = CIDLambdaH.GetKey(c);
IAssert(LambdaV[CID] >= MinLambda);
double Q = exp( - (double) LambdaV[CID]);
if (Q > QMax) { continue; }
TIntV CmtyV;
CIDNSetV[CID].GetKeyV(CmtyV);
if (CmtyV.Len() == 0) { continue; }
if (CID == BaseCID) { //if the community is the base community(epsilon community), discard
IAssert(CmtyV.Len() == G->GetNodes());
} else {
CmtyVV.Add(CmtyV);
QV.Add(Q);
}
}
}
示例11: GradientForRow
void TAGMFast::GradientForRow(const int UID, TIntFltH& GradU, const TIntSet& CIDSet) {
GradU.Gen(CIDSet.Len());
TFltV HOSumFV; //adjust for Fv of v hold out
if (HOVIDSV[UID].Len() > 0) {
HOSumFV.Gen(SumFV.Len());
for (int e = 0; e < HOVIDSV[UID].Len(); e++) {
for (int c = 0; c < SumFV.Len(); c++) {
HOSumFV[c] += GetCom(HOVIDSV[UID][e], c);
}
}
}
TUNGraph::TNodeI NI = G->GetNI(UID);
int Deg = NI.GetDeg();
TFltV PredV(Deg), GradV(CIDSet.Len());
TIntV CIDV(CIDSet.Len());
if (DoParallel && Deg + CIDSet.Len() > 10) {
#pragma omp parallel for schedule(static, 1)
for (int e = 0; e < Deg; e++) {
if (NI.GetNbrNId(e) == UID) { continue; }
if (HOVIDSV[UID].IsKey(NI.GetNbrNId(e))) { continue; }
PredV[e] = Prediction(UID, NI.GetNbrNId(e));
}
#pragma omp parallel for schedule(static, 1)
for (int c = 0; c < CIDSet.Len(); c++) {
int CID = CIDSet.GetKey(c);
double Val = 0.0;
for (int e = 0; e < Deg; e++) {
int VID = NI.GetNbrNId(e);
if (VID == UID) { continue; }
if (HOVIDSV[UID].IsKey(VID)) { continue; }
Val += PredV[e] * GetCom(VID, CID) / (1.0 - PredV[e]) + NegWgt * GetCom(VID, CID);
}
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[CID].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
Val -= NegWgt * (SumFV[CID] - HOSum - GetCom(UID, CID));
CIDV[c] = CID;
GradV[c] = Val;
}
}
else {
for (int e = 0; e < Deg; e++) {
if (NI.GetNbrNId(e) == UID) { continue; }
if (HOVIDSV[UID].IsKey(NI.GetNbrNId(e))) { continue; }
PredV[e] = Prediction(UID, NI.GetNbrNId(e));
}
for (int c = 0; c < CIDSet.Len(); c++) {
int CID = CIDSet.GetKey(c);
double Val = 0.0;
for (int e = 0; e < Deg; e++) {
int VID = NI.GetNbrNId(e);
if (VID == UID) { continue; }
if (HOVIDSV[UID].IsKey(VID)) { continue; }
Val += PredV[e] * GetCom(VID, CID) / (1.0 - PredV[e]) + NegWgt * GetCom(VID, CID);
}
double HOSum = HOVIDSV[UID].Len() > 0? HOSumFV[CID].Val: 0.0;//subtract Hold out pairs only if hold out pairs exist
Val -= NegWgt * (SumFV[CID] - HOSum - GetCom(UID, CID));
CIDV[c] = CID;
GradV[c] = Val;
}
}
//add regularization
if (RegCoef > 0.0) { //L1
for (int c = 0; c < GradV.Len(); c++) {
GradV[c] -= RegCoef;
}
}
if (RegCoef < 0.0) { //L2
for (int c = 0; c < GradV.Len(); c++) {
GradV[c] += 2 * RegCoef * GetCom(UID, CIDV[c]);
}
}
for (int c = 0; c < GradV.Len(); c++) {
if (GetCom(UID, CIDV[c]) == 0.0 && GradV[c] < 0.0) { continue; }
if (fabs(GradV[c]) < 0.0001) { continue; }
GradU.AddDat(CIDV[c], GradV[c]);
}
for (int c = 0; c < GradU.Len(); c++) {
if (GradU[c] >= 10) { GradU[c] = 10; }
if (GradU[c] <= -10) { GradU[c] = -10; }
IAssert(GradU[c] >= -10);
}
}
示例12: GetQV
// Returns \v QV, a vector of (1 - p_c) for each community c.
void TAGMFit::GetQV(TFltV& OutV) {
OutV.Gen(LambdaV.Len());
for (int i = 0; i < LambdaV.Len(); i++) {
OutV[i] = exp(- LambdaV[i]);
}
}
示例13: GetCfy
void TLogRegPredict::GetCfy(const TVec<TFltV>& X, TFltV& OutV, const TFltV& NewTheta) {
OutV.Gen(X.Len());
for (int r = 0; r < X.Len(); r++) {
OutV[r] = GetCfy(X[r], NewTheta);
}
}