本文整理汇总了C++中StructuralMaterialStatus::letTempStressVectorBe方法的典型用法代码示例。如果您正苦于以下问题:C++ StructuralMaterialStatus::letTempStressVectorBe方法的具体用法?C++ StructuralMaterialStatus::letTempStressVectorBe怎么用?C++ StructuralMaterialStatus::letTempStressVectorBe使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类StructuralMaterialStatus
的用法示例。
在下文中一共展示了StructuralMaterialStatus::letTempStressVectorBe方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void
SimpleCrossSection :: giveGeneralizedStress_Shell(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams/plates/shells
defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: See earlier response to comment
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() ) {
double thick = this->give(CS_Thickness, gp);
mat->giveThermalDilatationVector(e0, gp, tStep);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
elasticStrain.at(2) -= e0.at(2) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(4) -= e0.at(1) * et.at(2) / thick; // kappa_x
elasticStrain.at(5) -= e0.at(2) * et.at(2) / thick; // kappa_y
}
}
this->give3dShellStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例2:
void SimpleVitrificationMaterial :: giveRealStressVector_3d(FloatArray &answer, GaussPoint *gp,
const FloatArray &reducedStrain, TimeStep *tStep)
{
FloatArray strainVector;
FloatMatrix d;
FloatArray deltaStrain;
StructuralMaterialStatus *status = dynamic_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
this->giveStressDependentPartOfStrainVector(strainVector, gp, reducedStrain, tStep, VM_Total);
deltaStrain.beDifferenceOf( strainVector, status->giveStrainVector() );
this->give3dMaterialStiffnessMatrix(d, TangentStiffness, gp, tStep);
FloatArray deltaStress;
deltaStress.beProductOf(d, deltaStrain);
answer = status->giveStressVector();
answer.add(deltaStress);
// update gp
status->letTempStrainVectorBe(reducedStrain);
status->letTempStressVectorBe(answer);
}
示例3: response
void
SimpleCrossSection :: giveGeneralizedStress_Beam2d(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
/**Note: (by bp): This assumes that the behaviour is elastic
there exist a nuumber of nonlinear integral material models for beams defined directly in terms of integral forces and moments and corresponding
deformations and curvatures. This would require to implement support at material model level.
Mikael: That would not be a continuum material model, but it would highly depend on the cross-section shape, thus, it should be a special cross-section model instead.
This cross-section assumes you can split the response into inertia moments and pure material response. This is only possible for a constant, elastic response (i.e. elastic).
Therefore, this cross-section may only be allowed to give the elastic response.
*/
StructuralMaterial *mat = static_cast< StructuralMaterial * >( this->giveMaterial(gp) );
FloatArray elasticStrain, et, e0;
FloatMatrix tangent;
elasticStrain = strain;
this->giveTemperatureVector(et, gp, tStep);
if ( et.giveSize() > 0 ) {
mat->giveThermalDilatationVector(e0, gp, tStep);
double thick = this->give(CS_Thickness, gp);
elasticStrain.at(1) -= e0.at(1) * ( et.at(1) - mat->giveReferenceTemperature() );
if ( et.giveSize() > 1 ) {
elasticStrain.at(2) -= e0.at(1) * et.at(2) / thick; // kappa_x
}
}
this->give2dBeamStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, elasticStrain);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( mat->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例4: C
void
HyperElasticMaterial :: giveRealStressVector_3d(FloatArray &answer, GaussPoint *gp, const FloatArray &totalStrain, TimeStep *tStep)
{
double J2;
FloatMatrix C(3, 3);
FloatMatrix invC;
FloatArray strainVector;
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
this->giveStressDependentPartOfStrainVector_3d(strainVector, gp,
totalStrain,
tStep, VM_Total);
C.at(1, 1) = 1. + 2. * strainVector.at(1);
C.at(2, 2) = 1. + 2. * strainVector.at(2);
C.at(3, 3) = 1. + 2. * strainVector.at(3);
C.at(1, 2) = C.at(2, 1) = strainVector.at(6);
C.at(1, 3) = C.at(3, 1) = strainVector.at(5);
C.at(2, 3) = C.at(3, 2) = strainVector.at(4);
invC.beInverseOf(C);
J2 = C.giveDeterminant();
answer.resize(6);
double aux = ( K - 2. / 3. * G ) * ( J2 - 1. ) / 2. - G;
answer.at(1) = aux * invC.at(1, 1) + G;
answer.at(2) = aux * invC.at(2, 2) + G;
answer.at(3) = aux * invC.at(3, 3) + G;
answer.at(4) = aux * invC.at(2, 3);
answer.at(5) = aux * invC.at(1, 3);
answer.at(6) = aux * invC.at(1, 2);
// update gp
status->letTempStrainVectorBe(totalStrain);
status->letTempStressVectorBe(answer);
}
示例5:
void
WinklerPasternakMaterial::giveRealStressVector_2dPlateSubSoil(FloatArray &answer, GaussPoint *gp, const FloatArray &reducedE, TimeStep *tStep)
{
FloatMatrix tangent;
this->give2dPlateSubSoilStiffMtrx(tangent, ElasticStiffness, gp, tStep);
answer.beProductOf(tangent, reducedE);
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
status->letTempStrainVectorBe(reducedE);
status->letTempStressVectorBe(answer);
}
示例6:
void
FiberedCrossSection :: giveGeneralizedStress_Beam3d(FloatArray &answer, GaussPoint *gp, const FloatArray &strain, TimeStep *tStep)
{
double fiberThick, fiberWidth, fiberZCoord, fiberYCoord;
FloatArray fiberStrain, reducedFiberStress;
StructuralElement *element = static_cast< StructuralElement * >( gp->giveElement() );
FiberedCrossSectionInterface *interface;
if ( ( interface = static_cast< FiberedCrossSectionInterface * >( element->giveInterface(FiberedCrossSectionInterfaceType) ) ) == NULL ) {
OOFEM_ERROR("element with no fiber support encountered");
}
answer.resize(6);
answer.zero();
for ( int i = 1; i <= numberOfFibers; i++ ) {
GaussPoint *fiberGp = this->giveSlaveGaussPoint(gp, i - 1);
StructuralMaterial *fiberMat = static_cast< StructuralMaterial * >( domain->giveMaterial( fiberMaterials.at(i) ) );
// the question is whether this function should exist ?
// if yes the element details will be hidden.
// good idea also should be existence of element::GiveBmatrixOfLayer
// and computing strains here - but first idea looks better
// but treating of geometric non-linearities may become more complicated
// another approach - use several functions with assumed kinematic constraints
// resolve current layer z-coordinate
fiberThick = this->fiberThicks.at(i);
fiberWidth = this->fiberWidths.at(i);
fiberYCoord = fiberGp->giveNaturalCoordinate(1);
fiberZCoord = fiberGp->giveNaturalCoordinate(2);
interface->FiberedCrossSectionInterface_computeStrainVectorInFiber(fiberStrain, strain, fiberGp, tStep);
fiberMat->giveRealStressVector_Fiber(reducedFiberStress, fiberGp, fiberStrain, tStep);
// perform integration
// 1) membrane terms N, Qz, Qy
answer.at(1) += reducedFiberStress.at(1) * fiberWidth * fiberThick;
answer.at(2) += reducedFiberStress.at(2) * fiberWidth * fiberThick;
answer.at(3) += reducedFiberStress.at(3) * fiberWidth * fiberThick;
// 2) bending terms mx, my, mxy
answer.at(4) += ( reducedFiberStress.at(2) * fiberWidth * fiberThick * fiberYCoord -
reducedFiberStress.at(3) * fiberWidth * fiberThick * fiberZCoord );
answer.at(5) += reducedFiberStress.at(1) * fiberWidth * fiberThick * fiberZCoord;
answer.at(6) -= reducedFiberStress.at(1) * fiberWidth * fiberThick * fiberYCoord;
}
// now we must update master gp ///@ todo simply chosen the first fiber material as master material /JB
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >
( domain->giveMaterial( fiberMaterials.at(1) )->giveStatus(gp) );
status->letTempStrainVectorBe(strain);
status->letTempStressVectorBe(answer);
}
示例7:
void
StructuralMaterialSettable :: giveRealStressVector_3d(FloatArray &answer,
GaussPoint *gp,
const FloatArray &totalStrain,
TimeStep *atTime)
{
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
const FloatArray& stressVector = status->giveStressVector();
status->letTempStrainVectorBe(totalStrain);
status->letTempStressVectorBe(stressVector);
answer = stressVector;
}
示例8: mPlaneNormalStress
//.........这里部分代码省略.........
double SD;
FloatArray mPlaneNormalStress(numberOfMicroplanes), mPlaneShear_L_Stress(numberOfMicroplanes),
mPlaneShear_M_Stress(numberOfMicroplanes);
double mPlaneIntegrationWeight;
Microplane *mPlane;
FloatArray mPlaneStressCmpns, mPlaneStrainCmpns;
FloatArray stressIncrement;
answer.resize(6);
answer.zero();
StructuralMaterialStatus *status = static_cast< StructuralMaterialStatus * >( this->giveStatus(gp) );
this->initTempStatus(gp);
for ( mPlaneIndex = 0; mPlaneIndex < numberOfMicroplanes; mPlaneIndex++ ) {
mPlane = this->giveMicroplane(mPlaneIndex, gp);
mPlaneIndex1 = mPlaneIndex + 1;
// compute strain projections on mPlaneIndex-th microplane
computeStrainVectorComponents(mPlaneStrainCmpns, mPlane, totalStrain);
// compute real stresses on this microplane
giveRealMicroplaneStressVector(mPlaneStressCmpns, mPlane, mPlaneStrainCmpns, tStep);
mPlaneNormalStress.at(mPlaneIndex1) = mPlaneStressCmpns.at(2);
mPlaneShear_L_Stress.at(mPlaneIndex1) = mPlaneStressCmpns.at(3);
mPlaneShear_M_Stress.at(mPlaneIndex1) = mPlaneStressCmpns.at(4);
mPlaneIntegrationWeight = this->giveMicroplaneIntegrationWeight(mPlane);
SvSum += mPlaneNormalStress.at(mPlaneIndex1) * mPlaneIntegrationWeight;
SD = mPlaneNormalStress.at(mPlaneIndex1) - mPlaneStressCmpns.at(1);
//SDSum += SD* mPlaneIntegrationWeight;
// perform homogenization
// mPlaneStressCmpns.at(1) je SVdash
// mPlaneStressCmpns.at(2) je SN
// mPlaneStressCmpns.at(3) je SL
// mPlaneStressCmpns.at(4) je SM
// answer (1 az 6)
for ( i = 0; i < 6; i++ ) {
answer.at(i + 1) += ( ( N [ mPlaneIndex ] [ i ] - Kronecker [ i ] / 3. ) * SD +
L [ mPlaneIndex ] [ i ] * mPlaneShear_L_Stress.at(mPlaneIndex1) +
M [ mPlaneIndex ] [ i ] * mPlaneShear_M_Stress.at(mPlaneIndex1) )
* mPlaneIntegrationWeight;
}
}
SvSum = SvSum * 6.;
//nakonec answer take *6
SvDash = mPlaneStressCmpns.at(1);
//volumetric stress is the same for all mplanes
//and does not need to be homogenized .
//Only updating accordinging to mean normal stress must be done.
//Use updateVolumetricStressTo() if necessary
// sv=min(integr(sn)/2PI,SvDash)
if ( SvDash > SvSum / 3. ) {
SvDash = SvSum / 3.;
answer.zero();
for ( mPlaneIndex = 0; mPlaneIndex < numberOfMicroplanes; mPlaneIndex++ ) {
mPlane = this->giveMicroplane(mPlaneIndex, gp);
mPlaneIndex1 = mPlaneIndex + 1;
updateVolumetricStressTo(mPlane, SvDash);
SD = mPlaneNormalStress.at(mPlaneIndex1) - SvDash;
mPlaneIntegrationWeight = this->giveMicroplaneIntegrationWeight(mPlane);
for ( i = 0; i < 6; i++ ) {
answer.at(i + 1) += ( ( N [ mPlaneIndex ] [ i ] - Kronecker [ i ] / 3. ) * SD +
L [ mPlaneIndex ] [ i ] * mPlaneShear_L_Stress.at(mPlaneIndex1) +
M [ mPlaneIndex ] [ i ] * mPlaneShear_M_Stress.at(mPlaneIndex1) )
* mPlaneIntegrationWeight;
}
}
}
answer.times(6.0);
//2nd constraint, addition of volumetric part
answer.at(1) += SvDash;
answer.at(2) += SvDash;
answer.at(3) += SvDash;
// uncomment this
//status -> letStrainIncrementVectorBe (reducedStrainIncrement);
status->letTempStrainVectorBe(totalStrain);
// uncomment this
// stressIncrement = answer;
// crossSection->giveReducedCharacteristicVector(stressIncrement, gp, answer);
// stressIncrement.subtract (status -> giveStressVector());
// status -> letStressIncrementVectorBe (stressIncrement);
status->letTempStressVectorBe(answer);
}