本文整理汇总了C++中StructuralMaterialStatus::givePVector方法的典型用法代码示例。如果您正苦于以下问题:C++ StructuralMaterialStatus::givePVector方法的具体用法?C++ StructuralMaterialStatus::givePVector怎么用?C++ StructuralMaterialStatus::givePVector使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类StructuralMaterialStatus
的用法示例。
在下文中一共展示了StructuralMaterialStatus::givePVector方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
void
NLStructuralElement :: giveInternalForcesVector_withIRulesAsSubcells(FloatArray &answer,
TimeStep *tStep, int useUpdatedGpRecord)
{
/*
* Returns nodal representation of real internal forces computed from first Piola-Kirchoff stress
* if useGpRecord == 1 then stresses stored in the gp are used, otherwise stresses are computed
* this must be done if you want internal forces after element->updateYourself() has been called
* for the same time step.
* The integration procedure uses an integrationRulesArray for numerical integration.
* Each integration rule is considered to represent a separate sub-cell/element. Typically this would be used when
* integration of the element domain needs special treatment, e.g. when using the XFEM.
*/
FloatMatrix B;
FloatArray vStress, vStrain;
IntArray irlocnum;
FloatArray *m = & answer, temp;
if ( this->giveInterpolation() && this->giveInterpolation()->hasSubPatchFormulation() ) {
m = & temp;
}
// zero answer will resize accordingly when adding first contribution
answer.clear();
// loop over individual integration rules
for ( auto &iRule: integrationRulesArray ) {
for ( GaussPoint *gp: *iRule ) {
StructuralMaterialStatus *matStat = static_cast< StructuralMaterialStatus * >( gp->giveMaterialStatus() );
if ( nlGeometry == 0 ) {
this->computeBmatrixAt(gp, B);
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->giveStressVector();
} else {
this->computeStrainVector(vStrain, gp, tStep);
this->computeStressVector(vStress, vStrain, gp, tStep);
}
} else if ( nlGeometry == 1 ) {
if ( this->domain->giveEngngModel()->giveFormulation() == AL ) { // Cauchy stress
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->giveCVector();
} else {
this->computeCauchyStressVector(vStress, gp, tStep);
}
this->computeBmatrixAt(gp, B);
} else { // First Piola-Kirchhoff stress
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->givePVector();
} else {
this->computeFirstPKStressVector(vStress, gp, tStep);
}
this->computeBHmatrixAt(gp, B);
}
}
if ( vStress.giveSize() == 0 ) { //@todo is this really necessary?
break;
}
// compute nodal representation of internal forces at nodes as f = B^T*stress dV
double dV = this->computeVolumeAround(gp);
m->plusProduct(B, vStress, dV);
// localize irule contribution into element matrix
if ( this->giveIntegrationRuleLocalCodeNumbers(irlocnum, *iRule) ) {
answer.assemble(* m, irlocnum);
m->clear();
}
}
}
// if inactive: update fields but do not give any contribution to the structure
if ( !this->isActivated(tStep) ) {
answer.zero();
return;
}
}
示例2: giveInternalForcesVector
void
NLStructuralElement :: giveInternalForcesVector(FloatArray &answer, TimeStep *tStep, int useUpdatedGpRecord)
{
FloatMatrix B;
FloatArray vStress, vStrain, u;
// This function can be quite costly to do inside the loops when one has many slave dofs.
this->computeVectorOf(VM_Total, tStep, u);
// subtract initial displacements, if defined
if ( initialDisplacements ) {
u.subtract(* initialDisplacements);
}
// zero answer will resize accordingly when adding first contribution
answer.clear();
for ( auto &gp: *this->giveDefaultIntegrationRulePtr() ) {
StructuralMaterialStatus *matStat = static_cast< StructuralMaterialStatus * >( gp->giveMaterialStatus() );
// Engineering (small strain) stress
if ( nlGeometry == 0 ) {
this->computeBmatrixAt(gp, B);
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->giveStressVector();
} else {
///@todo Is this really what we should do for inactive elements?
if ( !this->isActivated(tStep) ) {
vStrain.resize( StructuralMaterial :: giveSizeOfVoigtSymVector( gp->giveMaterialMode() ) );
vStrain.zero();
}
vStrain.beProductOf(B, u);
this->computeStressVector(vStress, vStrain, gp, tStep);
}
} else if ( nlGeometry == 1 ) { // First Piola-Kirchhoff stress
if ( this->domain->giveEngngModel()->giveFormulation() == AL ) { // Cauchy stress
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->giveCVector();
} else {
this->computeCauchyStressVector(vStress, gp, tStep);
}
this->computeBmatrixAt(gp, B);
} else { // First Piola-Kirchhoff stress
if ( useUpdatedGpRecord == 1 ) {
vStress = matStat->givePVector();
} else {
this->computeFirstPKStressVector(vStress, gp, tStep);
///@todo This is actaully inefficient since it constructs B and twice and collects the nodal unknowns over and over.
}
this->computeBHmatrixAt(gp, B);
}
}
if ( vStress.giveSize() == 0 ) { /// @todo is this check really necessary?
break;
}
// Compute nodal internal forces at nodes as f = B^T*Stress dV
double dV = this->computeVolumeAround(gp);
if ( nlGeometry == 1 ) { // First Piola-Kirchhoff stress
if ( vStress.giveSize() == 9 ) {
FloatArray stressTemp;
StructuralMaterial :: giveReducedVectorForm( stressTemp, vStress, gp->giveMaterialMode() );
answer.plusProduct(B, stressTemp, dV);
} else {
answer.plusProduct(B, vStress, dV);
}
} else {
if ( vStress.giveSize() == 6 ) {
// It may happen that e.g. plane strain is computed
// using the default 3D implementation. If so,
// the stress needs to be reduced.
// (Note that no reduction will take place if
// the simulation is actually 3D.)
FloatArray stressTemp;
StructuralMaterial :: giveReducedSymVectorForm( stressTemp, vStress, gp->giveMaterialMode() );
answer.plusProduct(B, stressTemp, dV);
} else {
answer.plusProduct(B, vStress, dV);
}
}
}
// If inactive: update fields but do not give any contribution to the internal forces
if ( !this->isActivated(tStep) ) {
answer.zero();
return;
}
}