当前位置: 首页>>代码示例>>C++>>正文


C++ SparseOptimizer::setVerbose方法代码示例

本文整理汇总了C++中SparseOptimizer::setVerbose方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseOptimizer::setVerbose方法的具体用法?C++ SparseOptimizer::setVerbose怎么用?C++ SparseOptimizer::setVerbose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SparseOptimizer的用法示例。


在下文中一共展示了SparseOptimizer::setVerbose方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main()
{
  double euc_noise = 0.01;       // noise in position, m
  //  double outlier_ratio = 0.1;


  SparseOptimizer optimizer;
  optimizer.setVerbose(false);

  // variable-size block solver
  BlockSolverX::LinearSolverType * linearSolver = new LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
  BlockSolverX * solver_ptr = new BlockSolverX(linearSolver);
  g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

  optimizer.setAlgorithm(solver);

  vector<Vector3d> true_points;
  for (size_t i=0;i<1000; ++i)
  {
    true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
                                   Sample::uniform()-0.5,
                                   Sample::uniform()+10));
  }


  // set up two poses
  int vertex_id = 0;
  for (size_t i=0; i<2; ++i)
  {
    // set up rotation and translation for this node
    Vector3d t(0,0,i);
    Quaterniond q;
    q.setIdentity();

    Eigen::Isometry3d cam; // camera pose
    cam = q;
    cam.translation() = t;

    // set up node
    VertexSE3 *vc = new VertexSE3();
    vc->setEstimate(cam);

    vc->setId(vertex_id);      // vertex id

    cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;

    // set first cam pose fixed
    if (i==0)
      vc->setFixed(true);

    // add to optimizer
    optimizer.addVertex(vc);

    vertex_id++;                
  }

  // set up point matches
  for (size_t i=0; i<true_points.size(); ++i)
  {
    // get two poses
    VertexSE3* vp0 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
    VertexSE3* vp1 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);

    // calculate the relative 3D position of the point
    Vector3d pt0,pt1;
    pt0 = vp0->estimate().inverse() * true_points[i];
    pt1 = vp1->estimate().inverse() * true_points[i];

    // add in noise
    pt0 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));

    pt1 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));

    // form edge, with normals in varioius positions
    Vector3d nm0, nm1;
    nm0 << 0, i, 1;
    nm1 << 0, i, 1;
    nm0.normalize();
    nm1.normalize();

    Edge_V_V_GICP * e           // new edge with correct cohort for caching
        = new Edge_V_V_GICP(); 

    e->setVertex(0, vp0);      // first viewpoint

    e->setVertex(1, vp1);      // second viewpoint

    EdgeGICP meas;
    meas.pos0 = pt0;
    meas.pos1 = pt1;
    meas.normal0 = nm0;
    meas.normal1 = nm1;

    e->setMeasurement(meas);
//.........这里部分代码省略.........
开发者ID:2maz,项目名称:g2o,代码行数:101,代码来源:gicp_demo.cpp

示例2: main

int main(int argc, char** argv)
{
  bool fixLaser;
  int maxIterations;
  bool verbose;
  string inputFilename;
  string outputfilename;
  string rawFilename;
  string odomTestFilename;
  string dumpGraphFilename;
  // command line parsing
  CommandArgs commandLineArguments;
  commandLineArguments.param("i", maxIterations, 10, "perform n iterations");
  commandLineArguments.param("v", verbose, false, "verbose output of the optimization process");
  commandLineArguments.param("o", outputfilename, "", "output final version of the graph");
  commandLineArguments.param("test", odomTestFilename, "", "apply odometry calibration to some test data");
  commandLineArguments.param("dump", dumpGraphFilename, "", "write the graph to the disk");
  commandLineArguments.param("fixLaser", fixLaser, false, "keep the laser offset fixed during optimization");
  commandLineArguments.paramLeftOver("gm2dl-input", inputFilename, "", "gm2dl file which will be processed");
  commandLineArguments.paramLeftOver("raw-log", rawFilename, "", "raw log file containing the odometry");

  commandLineArguments.parseArgs(argc, argv);

  SparseOptimizer optimizer;
  optimizer.setVerbose(verbose);

  allocateSolverForSclam(optimizer);

  // loading
  DataQueue odometryQueue;
  int numLaserOdom = Gm2dlIO::readRobotLaser(rawFilename, odometryQueue);
  if (numLaserOdom == 0) {
    cerr << "No raw information read" << endl;
    return 0;
  }
  cerr << "Read " << numLaserOdom << " laser readings from file" << endl;

  Eigen::Vector3d odomCalib(1., 1., 1.);
  SE2 initialLaserPose;
  DataQueue robotLaserQueue;
  int numRobotLaser = Gm2dlIO::readRobotLaser(inputFilename, robotLaserQueue);
  if (numRobotLaser == 0) {
    cerr << "No robot laser read" << endl;
    return 0;
  } else {
    RobotLaser* rl = dynamic_cast<RobotLaser*>(robotLaserQueue.buffer().begin()->second);
    initialLaserPose = rl->odomPose().inverse() * rl->laserPose();
    cerr << PVAR(initialLaserPose.toVector().transpose()) << endl;
  }

  // adding the measurements
  vector<MotionInformation, Eigen::aligned_allocator<MotionInformation> > motions;
  {
    std::map<double, RobotData*>::const_iterator it = robotLaserQueue.buffer().begin();
    std::map<double, RobotData*>::const_iterator prevIt = it++;
    for (; it != robotLaserQueue.buffer().end(); ++it) {
      MotionInformation mi;
      RobotLaser* prevLaser = dynamic_cast<RobotLaser*>(prevIt->second);
      RobotLaser* curLaser = dynamic_cast<RobotLaser*>(it->second);
      mi.laserMotion = prevLaser->laserPose().inverse() * curLaser->laserPose();
      // get the motion of the robot in that time interval
      RobotLaser* prevOdom = dynamic_cast<RobotLaser*>(odometryQueue.findClosestData(prevLaser->timestamp()));
      RobotLaser* curOdom = dynamic_cast<RobotLaser*>(odometryQueue.findClosestData(curLaser->timestamp()));
      mi.odomMotion = prevOdom->odomPose().inverse() * curOdom->odomPose();
      mi.timeInterval = prevOdom->timestamp() - curOdom->timestamp();
      prevIt = it;
      motions.push_back(mi);
    }
  }

  if (1) {
    VertexSE2* laserOffset = new VertexSE2;
    laserOffset->setId(Gm2dlIO::ID_LASERPOSE);
    laserOffset->setEstimate(initialLaserPose);
    optimizer.addVertex(laserOffset);
    VertexOdomDifferentialParams* odomParamsVertex = new VertexOdomDifferentialParams;
    odomParamsVertex->setId(Gm2dlIO::ID_ODOMCALIB);
    odomParamsVertex->setEstimate(Eigen::Vector3d(1., 1., 1.));
    optimizer.addVertex(odomParamsVertex);
    for (size_t i = 0; i < motions.size(); ++i) {
      const SE2& odomMotion = motions[i].odomMotion;
      const SE2& laserMotion = motions[i].laserMotion;
      const double& timeInterval = motions[i].timeInterval;
      // add the edge
      MotionMeasurement mm(odomMotion.translation().x(), odomMotion.translation().y(), odomMotion.rotation().angle(), timeInterval);
      OdomAndLaserMotion meas;
      meas.velocityMeasurement = OdomConvert::convertToVelocity(mm);
      meas.laserMotion = laserMotion;
      EdgeSE2PureCalib* calibEdge = new EdgeSE2PureCalib;
      calibEdge->setVertex(0, laserOffset);
      calibEdge->setVertex(1, odomParamsVertex);
      calibEdge->setInformation(Eigen::Matrix3d::Identity());
      calibEdge->setMeasurement(meas);
      if (! optimizer.addEdge(calibEdge)) {
        cerr << "Error adding calib edge" << endl;
        delete calibEdge;
      }
    }

    if (fixLaser) {
//.........这里部分代码省略.........
开发者ID:2maz,项目名称:g2o,代码行数:101,代码来源:sclam_pure_calibration.cpp

示例3: main


//.........这里部分代码省略.........
  }

#ifndef G2O_DISABLE_DYNAMIC_LOADING_OF_LIBRARIES
  // registering all the types from the libraries
  DlWrapper dlTypesWrapper;
  loadStandardTypes(dlTypesWrapper, argc, argv);
  // register all the solvers
  DlWrapper dlSolverWrapper;
  loadStandardSolver(dlSolverWrapper, argc, argv);
#else
  if (verbose)
    cout << "# linked version of g2o" << endl;
#endif

  OptimizationAlgorithmFactory* solverFactory = OptimizationAlgorithmFactory::instance();
  if (listSolvers) {
    solverFactory->listSolvers(cout);
  }

  if (listTypes) {
    Factory::instance()->printRegisteredTypes(cout, true);
  }

  if (listRobustKernels) {
    std::vector<std::string> kernels;
    RobustKernelFactory::instance()->fillKnownKernels(kernels);
    cout << "Robust Kernels:" << endl;
    for (size_t i = 0; i < kernels.size(); ++i) {
      cout << kernels[i] << endl;
    }
  }

  SparseOptimizer optimizer;
  optimizer.setVerbose(verbose);
  optimizer.setForceStopFlag(&hasToStop);

  SparseOptimizerTerminateAction* terminateAction = 0;
  if (maxIterations < 0) {
    cerr << "# setup termination criterion based on the gain of the iteration" << endl;
    maxIterations = maxIterationsWithGain;
    terminateAction = new SparseOptimizerTerminateAction;
    terminateAction->setGainThreshold(gain);
    terminateAction->setMaxIterations(maxIterationsWithGain);
    optimizer.addPostIterationAction(terminateAction);
  }

  // allocating the desired solver + testing whether the solver is okay
  OptimizationAlgorithmProperty solverProperty;
  optimizer.setAlgorithm(solverFactory->construct(strSolver, solverProperty));
  if (! optimizer.solver()) {
    cerr << "Error allocating solver. Allocating \"" << strSolver << "\" failed!" << endl;
    return 0;
  }
  
  if (solverProperties.size() > 0) {
    bool updateStatus = optimizer.solver()->updatePropertiesFromString(solverProperties);
    if (! updateStatus) {
      cerr << "Failure while updating the solver properties from the given string" << endl;
    }
  }
  if (solverProperties.size() > 0 || printSolverProperties) {
    optimizer.solver()->printProperties(cerr);
  }

  // Loading the input data
  if (loadLookup.size() > 0) {
开发者ID:PennPanda,项目名称:g2o,代码行数:67,代码来源:g2o.cpp

示例4: main

int main(int argc, char **argv)
{
  int num_points = 0;

  // check for arg, # of points to use in projection SBA
  if (argc > 1)
    num_points = atoi(argv[1]);

  double euc_noise = 0.1;      // noise in position, m
  double pix_noise = 1.0;       // pixel noise
  //  double outlier_ratio = 0.1;


  SparseOptimizer optimizer;
  optimizer.setVerbose(false);

  // variable-size block solver
  BlockSolverX::LinearSolverType * linearSolver
      = new LinearSolverCSparse<g2o
        ::BlockSolverX::PoseMatrixType>();


  BlockSolverX * solver_ptr
      = new BlockSolverX(linearSolver);

  g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

  optimizer.setAlgorithm(solver);

  vector<Vector3d> true_points;
  for (size_t i=0;i<1000; ++i)
  {
    true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
                                   Sample::uniform()-0.5,
                                   Sample::uniform()+10));
  }


  // set up camera params
  Vector2d focal_length(500,500); // pixels
  Vector2d principal_point(320,240); // 640x480 image
  double baseline = 0.075;      // 7.5 cm baseline

  // set up camera params and projection matrices on vertices
  g2o::VertexSCam::setKcam(focal_length[0],focal_length[1],
                           principal_point[0],principal_point[1],
                           baseline);


  // set up two poses
  int vertex_id = 0;
  for (size_t i=0; i<2; ++i)
  {
    // set up rotation and translation for this node
    Vector3d t(0,0,i);
    Quaterniond q;
    q.setIdentity();

    Eigen::Isometry3d cam;           // camera pose
    cam = q;
    cam.translation() = t;

    // set up node
    VertexSCam *vc = new VertexSCam();
    vc->setEstimate(cam);
    vc->setId(vertex_id);      // vertex id

    cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;

    // set first cam pose fixed
    if (i==0)
      vc->setFixed(true);

    // make sure projection matrices are set
    vc->setAll();

    // add to optimizer
    optimizer.addVertex(vc);

    vertex_id++;                
  }

  // set up point matches for GICP
  for (size_t i=0; i<true_points.size(); ++i)
  {
    // get two poses
    VertexSE3* vp0 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
    VertexSE3* vp1 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);

    // calculate the relative 3D position of the point
    Vector3d pt0,pt1;
    pt0 = vp0->estimate().inverse() * true_points[i];
    pt1 = vp1->estimate().inverse() * true_points[i];

    // add in noise
    pt0 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));
//.........这里部分代码省略.........
开发者ID:Aerobota,项目名称:c2tam,代码行数:101,代码来源:gicp_sba_demo.cpp

示例5: time

void Optimizer::optimizeUseG2O()
{


    // create the linear solver
    BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>();

    // create the block solver on top of the linear solver
    BlockSolverX* blockSolver = new BlockSolverX(linearSolver);

    // create the algorithm to carry out the optimization
    //OptimizationAlgorithmGaussNewton* optimizationAlgorithm = new OptimizationAlgorithmGaussNewton(blockSolver);
    OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver);

    // NOTE: We skip to fix a variable here, either this is stored in the file
    // itself or Levenberg will handle it.

    // create the optimizer to load the data and carry out the optimization
    SparseOptimizer optimizer;
    SparseOptimizer::initMultiThreading();
    optimizer.setVerbose(true);
    optimizer.setAlgorithm(optimizationAlgorithm);

    {
        pcl::ScopeTime time("G2O setup Graph vertices");
        for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count)
        {
            VertexSE3 *vertex = new VertexSE3;
            vertex->setId(cloud_count);
            Isometry3D affine = Isometry3D::Identity();
            affine.linear() = m_pointClouds[cloud_count]->sensor_orientation_.toRotationMatrix().cast<Isometry3D::Scalar>();
            affine.translation() = m_pointClouds[cloud_count]->sensor_origin_.block<3, 1>(0, 0).cast<Isometry3D::Scalar>();
            vertex->setEstimate(affine);
            optimizer.addVertex(vertex);
        }
        optimizer.vertex(0)->setFixed(true);
    }

    {
        pcl::ScopeTime time("G2O setup Graph edges");
        double trans_noise = 0.5, rot_noise = 0.5235;
        EdgeSE3::InformationType infomation = EdgeSE3::InformationType::Zero();
        infomation.block<3, 3>(0, 0) << trans_noise * trans_noise, 0, 0,
                                        0, trans_noise * trans_noise, 0,
                                        0, 0, trans_noise * trans_noise;
        infomation.block<3, 3>(3, 3) << rot_noise * rot_noise, 0, 0,
                                        0, rot_noise * rot_noise, 0,
                                        0, 0, rot_noise * rot_noise;
        for (size_t pair_count = 0; pair_count < m_cloudPairs.size(); ++pair_count)
        {
            CloudPair pair = m_cloudPairs[pair_count];
		    int from = pair.corresIdx.first;
		    int to = pair.corresIdx.second;
            EdgeSE3 *edge = new EdgeSE3;
		    edge->vertices()[0] = optimizer.vertex(from);
		    edge->vertices()[1] = optimizer.vertex(to);

            Eigen::Matrix<double, 6, 6> ATA = Eigen::Matrix<double, 6, 6>::Zero();
            Eigen::Matrix<double, 6, 1> ATb = Eigen::Matrix<double, 6, 1>::Zero();
#pragma unroll 8
            for (size_t point_count = 0; point_count < pair.corresPointIdx.size(); ++point_count) {
                int point_p = pair.corresPointIdx[point_count].first;
                int point_q = pair.corresPointIdx[point_count].second;
                PointType P = m_pointClouds[from]->points[point_p];
                PointType Q = m_pointClouds[to]->points[point_q];

                Eigen::Vector3d p = P.getVector3fMap().cast<double>();
                Eigen::Vector3d q = Q.getVector3fMap().cast<double>();
                Eigen::Vector3d Np = P.getNormalVector3fMap().cast<double>();

                double b = (p - q).dot(Np);

                Eigen::Matrix<double, 6, 1> A_p;
                A_p.block<3, 1>(0, 0) = p.cross(Np);
                A_p.block<3, 1>(3, 0) = Np;

                ATA += A_p * A_p.transpose();
                ATb += A_p * b;
            }

            Eigen::Matrix<double, 6, 1> X = ATA.ldlt().solve(ATb);
            Isometry3D measure = Isometry3D::Identity();
            float beta = X[0];
            float gammar = X[1];
            float alpha = X[2];
            measure.linear() = (Eigen::Matrix3d)Eigen::AngleAxisd(alpha, Eigen::Vector3d::UnitZ()) *
                Eigen::AngleAxisd(gammar, Eigen::Vector3d::UnitY()) *
                Eigen::AngleAxisd(beta, Eigen::Vector3d::UnitX());
            measure.translation() = X.block<3, 1>(3, 0);

            edge->setMeasurement(measure);

		    edge->setInformation(infomation);
            
            optimizer.addEdge(edge);
        }
    }

    optimizer.save("debug_preOpt.g2o");
    {
//.........这里部分代码省略.........
开发者ID:rickytan,项目名称:KALOFution,代码行数:101,代码来源:Optimizer.cpp

示例6: main

int main(int argc, char** argv)
{
  bool fixLaser;
  int maxIterations;
  bool verbose;
  string inputFilename;
  string outputfilename;
  string rawFilename;
  string odomTestFilename;
  string dumpGraphFilename;
  // command line parsing
  CommandArgs commandLineArguments;
  commandLineArguments.param("i", maxIterations, 10, "perform n iterations");
  commandLineArguments.param("v", verbose, false, "verbose output of the optimization process");
  commandLineArguments.param("o", outputfilename, "", "output final version of the graph");
  commandLineArguments.param("test", odomTestFilename, "", "apply odometry calibration to some test data");
  commandLineArguments.param("dump", dumpGraphFilename, "", "write the graph to the disk");
  commandLineArguments.param("fixLaser", fixLaser, false, "keep the laser offset fixed during optimization");
  commandLineArguments.paramLeftOver("gm2dl-input", inputFilename, "", "gm2dl file which will be processed");
  commandLineArguments.paramLeftOver("raw-log", rawFilename, "", "raw log file containing the odometry");

  commandLineArguments.parseArgs(argc, argv);

  SparseOptimizer optimizer;
  optimizer.setVerbose(verbose);
  optimizer.setForceStopFlag(&hasToStop);

  allocateSolverForSclam(optimizer);

  // loading
  if (! Gm2dlIO::readGm2dl(inputFilename, optimizer, false)) {
    cerr << "Error while loading gm2dl file" << endl;
  }
  DataQueue robotLaserQueue;
  int numLaserOdom = Gm2dlIO::readRobotLaser(rawFilename, robotLaserQueue);
  if (numLaserOdom == 0) {
    cerr << "No raw information read" << endl;
    return 0;
  }
  cerr << "Read " << numLaserOdom << " laser readings from file" << endl;

  bool gaugeFreedom = optimizer.gaugeFreedom();

  OptimizableGraph::Vertex* gauge = optimizer.findGauge();
  if (gaugeFreedom) {
    if (! gauge) {
      cerr <<  "# cannot find a vertex to fix in this thing" << endl;
      return 2;
    } else {
      cerr << "# graph is fixed by node " << gauge->id() << endl;
      gauge->setFixed(true);
    }
  } else {
    cerr << "# graph is fixed by priors" << endl;
  }

  addOdometryCalibLinksDifferential(optimizer, robotLaserQueue);

  // sanity check
  HyperDijkstra d(&optimizer);
  UniformCostFunction f;
  d.shortestPaths(gauge, &f);
  //cerr << PVAR(d.visited().size()) << endl;

  if (d.visited().size()!=optimizer.vertices().size()) {
    cerr << CL_RED("Warning: d.visited().size() != optimizer.vertices().size()") << endl;
    cerr << "visited: " << d.visited().size() << endl;
    cerr << "vertices: " << optimizer.vertices().size() << endl;
    if (1)
      for (SparseOptimizer::VertexIDMap::const_iterator it = optimizer.vertices().begin(); it != optimizer.vertices().end(); ++it) {
        OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(it->second);
        if (d.visited().count(v) == 0) {
          cerr << "\t unvisited vertex " << it->first << " " << (void*)v << endl;
          v->setFixed(true);
        }
      }
  }

  for (SparseOptimizer::VertexIDMap::const_iterator it = optimizer.vertices().begin(); it != optimizer.vertices().end(); ++it) {
    OptimizableGraph::Vertex* v = static_cast<OptimizableGraph::Vertex*>(it->second);
    if (v->fixed()) {
      cerr << "\t fixed vertex " << it->first << endl;
    }
  }

  VertexSE2* laserOffset = dynamic_cast<VertexSE2*>(optimizer.vertex(Gm2dlIO::ID_LASERPOSE));
  VertexOdomDifferentialParams* odomParamsVertex = dynamic_cast<VertexOdomDifferentialParams*>(optimizer.vertex(Gm2dlIO::ID_ODOMCALIB));

  if (fixLaser) {
    cerr << "Fix position of the laser offset" << endl;
    laserOffset->setFixed(true);
  }

  signal(SIGINT, sigquit_handler);
  cerr << "Doing full estimation" << endl;
  optimizer.initializeOptimization();
  optimizer.computeActiveErrors();
  cerr << "Initial chi2 = " << FIXED(optimizer.chi2()) << endl;

  int i=optimizer.optimize(maxIterations);
//.........这里部分代码省略.........
开发者ID:Aerobota,项目名称:c2tam,代码行数:101,代码来源:sclam_odom_laser.cpp


注:本文中的SparseOptimizer::setVerbose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。