本文整理汇总了C++中SparseOptimizer::addVertex方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseOptimizer::addVertex方法的具体用法?C++ SparseOptimizer::addVertex怎么用?C++ SparseOptimizer::addVertex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SparseOptimizer
的用法示例。
在下文中一共展示了SparseOptimizer::addVertex方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: updateVertexIdx
inline void updateVertexIdx()
{
if ((ros::Time::now() - lastSavedNodeTime).toSec() >= 0.03)
{
nodeCounter++;
lastSavedNodeTime = ros::Time::now();
PreviousVertexId = CurrentVertexId;
CurrentVertexId++;
if (CurrentVertexId - LandmarkCount >= 100)
{
CurrentVertexId = LandmarkCount;
}
{
VertexSE2 * r = new VertexSE2;
r->setEstimate(Eigen::Vector3d(location.x, location.y, 0));
r->setFixed(false);
r->setId(CurrentVertexId);
if (optimizer.vertex(CurrentVertexId) != NULL)
{
optimizer.removeVertex(optimizer.vertex(CurrentVertexId));
}
optimizer.addVertex(r);
}
{
EdgeSE2 * e = new EdgeSE2;
e->vertices()[0] = optimizer.vertex(PreviousVertexId);
e->vertices()[1] = optimizer.vertex(CurrentVertexId);
Point2d dead_reck = getOdometryFromLastGet();
e->setMeasurement(SE2(dead_reck.x, dead_reck.y, 0));
Matrix3d information;
information.fill(0.);
information(0, 0) = 200;
information(1, 1) = 200;
information(2, 2) = 1;
e->setInformation(information);
optimizer.addEdge(e);
}
}
}
示例2: main
int main()
{
double euc_noise = 0.01; // noise in position, m
// double outlier_ratio = 0.1;
SparseOptimizer optimizer;
optimizer.setVerbose(false);
// variable-size block solver
BlockSolverX::LinearSolverType * linearSolver = new LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
BlockSolverX * solver_ptr = new BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
vector<Vector3d> true_points;
for (size_t i=0;i<1000; ++i)
{
true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
Sample::uniform()-0.5,
Sample::uniform()+10));
}
// set up two poses
int vertex_id = 0;
for (size_t i=0; i<2; ++i)
{
// set up rotation and translation for this node
Vector3d t(0,0,i);
Quaterniond q;
q.setIdentity();
Eigen::Isometry3d cam; // camera pose
cam = q;
cam.translation() = t;
// set up node
VertexSE3 *vc = new VertexSE3();
vc->setEstimate(cam);
vc->setId(vertex_id); // vertex id
cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;
// set first cam pose fixed
if (i==0)
vc->setFixed(true);
// add to optimizer
optimizer.addVertex(vc);
vertex_id++;
}
// set up point matches
for (size_t i=0; i<true_points.size(); ++i)
{
// get two poses
VertexSE3* vp0 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
VertexSE3* vp1 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);
// calculate the relative 3D position of the point
Vector3d pt0,pt1;
pt0 = vp0->estimate().inverse() * true_points[i];
pt1 = vp1->estimate().inverse() * true_points[i];
// add in noise
pt0 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
pt1 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
// form edge, with normals in varioius positions
Vector3d nm0, nm1;
nm0 << 0, i, 1;
nm1 << 0, i, 1;
nm0.normalize();
nm1.normalize();
Edge_V_V_GICP * e // new edge with correct cohort for caching
= new Edge_V_V_GICP();
e->setVertex(0, vp0); // first viewpoint
e->setVertex(1, vp1); // second viewpoint
EdgeGICP meas;
meas.pos0 = pt0;
meas.pos1 = pt1;
meas.normal0 = nm0;
meas.normal1 = nm1;
e->setMeasurement(meas);
//.........这里部分代码省略.........
示例3: main
int main(int argc, char** argv)
{
bool fixLaser;
int maxIterations;
bool verbose;
string inputFilename;
string outputfilename;
string rawFilename;
string odomTestFilename;
string dumpGraphFilename;
// command line parsing
CommandArgs commandLineArguments;
commandLineArguments.param("i", maxIterations, 10, "perform n iterations");
commandLineArguments.param("v", verbose, false, "verbose output of the optimization process");
commandLineArguments.param("o", outputfilename, "", "output final version of the graph");
commandLineArguments.param("test", odomTestFilename, "", "apply odometry calibration to some test data");
commandLineArguments.param("dump", dumpGraphFilename, "", "write the graph to the disk");
commandLineArguments.param("fixLaser", fixLaser, false, "keep the laser offset fixed during optimization");
commandLineArguments.paramLeftOver("gm2dl-input", inputFilename, "", "gm2dl file which will be processed");
commandLineArguments.paramLeftOver("raw-log", rawFilename, "", "raw log file containing the odometry");
commandLineArguments.parseArgs(argc, argv);
SparseOptimizer optimizer;
optimizer.setVerbose(verbose);
allocateSolverForSclam(optimizer);
// loading
DataQueue odometryQueue;
int numLaserOdom = Gm2dlIO::readRobotLaser(rawFilename, odometryQueue);
if (numLaserOdom == 0) {
cerr << "No raw information read" << endl;
return 0;
}
cerr << "Read " << numLaserOdom << " laser readings from file" << endl;
Eigen::Vector3d odomCalib(1., 1., 1.);
SE2 initialLaserPose;
DataQueue robotLaserQueue;
int numRobotLaser = Gm2dlIO::readRobotLaser(inputFilename, robotLaserQueue);
if (numRobotLaser == 0) {
cerr << "No robot laser read" << endl;
return 0;
} else {
RobotLaser* rl = dynamic_cast<RobotLaser*>(robotLaserQueue.buffer().begin()->second);
initialLaserPose = rl->odomPose().inverse() * rl->laserPose();
cerr << PVAR(initialLaserPose.toVector().transpose()) << endl;
}
// adding the measurements
vector<MotionInformation, Eigen::aligned_allocator<MotionInformation> > motions;
{
std::map<double, RobotData*>::const_iterator it = robotLaserQueue.buffer().begin();
std::map<double, RobotData*>::const_iterator prevIt = it++;
for (; it != robotLaserQueue.buffer().end(); ++it) {
MotionInformation mi;
RobotLaser* prevLaser = dynamic_cast<RobotLaser*>(prevIt->second);
RobotLaser* curLaser = dynamic_cast<RobotLaser*>(it->second);
mi.laserMotion = prevLaser->laserPose().inverse() * curLaser->laserPose();
// get the motion of the robot in that time interval
RobotLaser* prevOdom = dynamic_cast<RobotLaser*>(odometryQueue.findClosestData(prevLaser->timestamp()));
RobotLaser* curOdom = dynamic_cast<RobotLaser*>(odometryQueue.findClosestData(curLaser->timestamp()));
mi.odomMotion = prevOdom->odomPose().inverse() * curOdom->odomPose();
mi.timeInterval = prevOdom->timestamp() - curOdom->timestamp();
prevIt = it;
motions.push_back(mi);
}
}
if (1) {
VertexSE2* laserOffset = new VertexSE2;
laserOffset->setId(Gm2dlIO::ID_LASERPOSE);
laserOffset->setEstimate(initialLaserPose);
optimizer.addVertex(laserOffset);
VertexOdomDifferentialParams* odomParamsVertex = new VertexOdomDifferentialParams;
odomParamsVertex->setId(Gm2dlIO::ID_ODOMCALIB);
odomParamsVertex->setEstimate(Eigen::Vector3d(1., 1., 1.));
optimizer.addVertex(odomParamsVertex);
for (size_t i = 0; i < motions.size(); ++i) {
const SE2& odomMotion = motions[i].odomMotion;
const SE2& laserMotion = motions[i].laserMotion;
const double& timeInterval = motions[i].timeInterval;
// add the edge
MotionMeasurement mm(odomMotion.translation().x(), odomMotion.translation().y(), odomMotion.rotation().angle(), timeInterval);
OdomAndLaserMotion meas;
meas.velocityMeasurement = OdomConvert::convertToVelocity(mm);
meas.laserMotion = laserMotion;
EdgeSE2PureCalib* calibEdge = new EdgeSE2PureCalib;
calibEdge->setVertex(0, laserOffset);
calibEdge->setVertex(1, odomParamsVertex);
calibEdge->setInformation(Eigen::Matrix3d::Identity());
calibEdge->setMeasurement(meas);
if (! optimizer.addEdge(calibEdge)) {
cerr << "Error adding calib edge" << endl;
delete calibEdge;
}
}
if (fixLaser) {
//.........这里部分代码省略.........
示例4: main
//.........这里部分代码省略.........
const SparseOptimizer::Vertex* v = static_cast<const SparseOptimizer::Vertex*>(it->second);
maxDim = max(maxDim, v->dimension());
}
vector<SparseOptimizer::Edge*> edges;
for (SparseOptimizer::EdgeSet::iterator it = optimizer.edges().begin(); it != optimizer.edges().end(); ++it) {
SparseOptimizer::Edge* e = dynamic_cast<SparseOptimizer::Edge*>(*it);
edges.push_back(e);
}
optimizer.edges().clear();
optimizer.vertices().clear();
optimizer.setVerbose(false);
// sort the edges in a way that inserting them makes sense
sort(edges.begin(), edges.end(), IncrementalEdgesCompare());
double cumTime = 0.;
int vertexCount=0;
int lastOptimizedVertexCount = 0;
int lastVisUpdateVertexCount = 0;
bool freshlyOptimized=false;
bool firstRound = true;
HyperGraph::VertexSet verticesAdded;
HyperGraph::EdgeSet edgesAdded;
for (vector<SparseOptimizer::Edge*>::iterator it = edges.begin(); it != edges.end(); ++it) {
SparseOptimizer::Edge* e = *it;
int doInit = 0;
SparseOptimizer::Vertex* v1 = optimizer.vertex(e->vertices()[0]->id());
SparseOptimizer::Vertex* v2 = optimizer.vertex(e->vertices()[1]->id());
if (! v1) {
SparseOptimizer::Vertex* v = v1 = dynamic_cast<SparseOptimizer::Vertex*>(e->vertices()[0]);
bool v1Added = optimizer.addVertex(v);
//cerr << "adding" << v->id() << "(" << v->dimension() << ")" << endl;
assert(v1Added);
if (! v1Added)
cerr << "Error adding vertex " << v->id() << endl;
else
verticesAdded.insert(v);
doInit = 1;
if (v->dimension() == maxDim)
vertexCount++;
}
if (! v2) {
SparseOptimizer::Vertex* v = v2 = dynamic_cast<SparseOptimizer::Vertex*>(e->vertices()[1]);
bool v2Added = optimizer.addVertex(v);
//cerr << "adding" << v->id() << "(" << v->dimension() << ")" << endl;
assert(v2Added);
if (! v2Added)
cerr << "Error adding vertex " << v->id() << endl;
else
verticesAdded.insert(v);
doInit = 2;
if (v->dimension() == maxDim)
vertexCount++;
}
// adding the edge and initialization of the vertices
{
//cerr << " adding edge " << e->vertices()[0]->id() << " " << e->vertices()[1]->id() << endl;
if (! optimizer.addEdge(e)) {
cerr << "Unable to add edge " << e->vertices()[0]->id() << " -> " << e->vertices()[1]->id() << endl;
} else {
edgesAdded.insert(e);
示例5: main
int main(int argc, char **argv)
{
int num_points = 0;
// check for arg, # of points to use in projection SBA
if (argc > 1)
num_points = atoi(argv[1]);
double euc_noise = 0.1; // noise in position, m
double pix_noise = 1.0; // pixel noise
// double outlier_ratio = 0.1;
SparseOptimizer optimizer;
optimizer.setVerbose(false);
// variable-size block solver
BlockSolverX::LinearSolverType * linearSolver
= new LinearSolverCSparse<g2o
::BlockSolverX::PoseMatrixType>();
BlockSolverX * solver_ptr
= new BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
vector<Vector3d> true_points;
for (size_t i=0;i<1000; ++i)
{
true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
Sample::uniform()-0.5,
Sample::uniform()+10));
}
// set up camera params
Vector2d focal_length(500,500); // pixels
Vector2d principal_point(320,240); // 640x480 image
double baseline = 0.075; // 7.5 cm baseline
// set up camera params and projection matrices on vertices
g2o::VertexSCam::setKcam(focal_length[0],focal_length[1],
principal_point[0],principal_point[1],
baseline);
// set up two poses
int vertex_id = 0;
for (size_t i=0; i<2; ++i)
{
// set up rotation and translation for this node
Vector3d t(0,0,i);
Quaterniond q;
q.setIdentity();
Eigen::Isometry3d cam; // camera pose
cam = q;
cam.translation() = t;
// set up node
VertexSCam *vc = new VertexSCam();
vc->setEstimate(cam);
vc->setId(vertex_id); // vertex id
cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;
// set first cam pose fixed
if (i==0)
vc->setFixed(true);
// make sure projection matrices are set
vc->setAll();
// add to optimizer
optimizer.addVertex(vc);
vertex_id++;
}
// set up point matches for GICP
for (size_t i=0; i<true_points.size(); ++i)
{
// get two poses
VertexSE3* vp0 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
VertexSE3* vp1 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);
// calculate the relative 3D position of the point
Vector3d pt0,pt1;
pt0 = vp0->estimate().inverse() * true_points[i];
pt1 = vp1->estimate().inverse() * true_points[i];
// add in noise
pt0 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
//.........这里部分代码省略.........
示例6: time
void Optimizer::optimizeUseG2O()
{
// create the linear solver
BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>();
// create the block solver on top of the linear solver
BlockSolverX* blockSolver = new BlockSolverX(linearSolver);
// create the algorithm to carry out the optimization
//OptimizationAlgorithmGaussNewton* optimizationAlgorithm = new OptimizationAlgorithmGaussNewton(blockSolver);
OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver);
// NOTE: We skip to fix a variable here, either this is stored in the file
// itself or Levenberg will handle it.
// create the optimizer to load the data and carry out the optimization
SparseOptimizer optimizer;
SparseOptimizer::initMultiThreading();
optimizer.setVerbose(true);
optimizer.setAlgorithm(optimizationAlgorithm);
{
pcl::ScopeTime time("G2O setup Graph vertices");
for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count)
{
VertexSE3 *vertex = new VertexSE3;
vertex->setId(cloud_count);
Isometry3D affine = Isometry3D::Identity();
affine.linear() = m_pointClouds[cloud_count]->sensor_orientation_.toRotationMatrix().cast<Isometry3D::Scalar>();
affine.translation() = m_pointClouds[cloud_count]->sensor_origin_.block<3, 1>(0, 0).cast<Isometry3D::Scalar>();
vertex->setEstimate(affine);
optimizer.addVertex(vertex);
}
optimizer.vertex(0)->setFixed(true);
}
{
pcl::ScopeTime time("G2O setup Graph edges");
double trans_noise = 0.5, rot_noise = 0.5235;
EdgeSE3::InformationType infomation = EdgeSE3::InformationType::Zero();
infomation.block<3, 3>(0, 0) << trans_noise * trans_noise, 0, 0,
0, trans_noise * trans_noise, 0,
0, 0, trans_noise * trans_noise;
infomation.block<3, 3>(3, 3) << rot_noise * rot_noise, 0, 0,
0, rot_noise * rot_noise, 0,
0, 0, rot_noise * rot_noise;
for (size_t pair_count = 0; pair_count < m_cloudPairs.size(); ++pair_count)
{
CloudPair pair = m_cloudPairs[pair_count];
int from = pair.corresIdx.first;
int to = pair.corresIdx.second;
EdgeSE3 *edge = new EdgeSE3;
edge->vertices()[0] = optimizer.vertex(from);
edge->vertices()[1] = optimizer.vertex(to);
Eigen::Matrix<double, 6, 6> ATA = Eigen::Matrix<double, 6, 6>::Zero();
Eigen::Matrix<double, 6, 1> ATb = Eigen::Matrix<double, 6, 1>::Zero();
#pragma unroll 8
for (size_t point_count = 0; point_count < pair.corresPointIdx.size(); ++point_count) {
int point_p = pair.corresPointIdx[point_count].first;
int point_q = pair.corresPointIdx[point_count].second;
PointType P = m_pointClouds[from]->points[point_p];
PointType Q = m_pointClouds[to]->points[point_q];
Eigen::Vector3d p = P.getVector3fMap().cast<double>();
Eigen::Vector3d q = Q.getVector3fMap().cast<double>();
Eigen::Vector3d Np = P.getNormalVector3fMap().cast<double>();
double b = (p - q).dot(Np);
Eigen::Matrix<double, 6, 1> A_p;
A_p.block<3, 1>(0, 0) = p.cross(Np);
A_p.block<3, 1>(3, 0) = Np;
ATA += A_p * A_p.transpose();
ATb += A_p * b;
}
Eigen::Matrix<double, 6, 1> X = ATA.ldlt().solve(ATb);
Isometry3D measure = Isometry3D::Identity();
float beta = X[0];
float gammar = X[1];
float alpha = X[2];
measure.linear() = (Eigen::Matrix3d)Eigen::AngleAxisd(alpha, Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(gammar, Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(beta, Eigen::Vector3d::UnitX());
measure.translation() = X.block<3, 1>(3, 0);
edge->setMeasurement(measure);
edge->setInformation(infomation);
optimizer.addEdge(edge);
}
}
optimizer.save("debug_preOpt.g2o");
{
//.........这里部分代码省略.........