当前位置: 首页>>代码示例>>C++>>正文


C++ SparseOptimizer::setAlgorithm方法代码示例

本文整理汇总了C++中SparseOptimizer::setAlgorithm方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseOptimizer::setAlgorithm方法的具体用法?C++ SparseOptimizer::setAlgorithm怎么用?C++ SparseOptimizer::setAlgorithm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SparseOptimizer的用法示例。


在下文中一共展示了SparseOptimizer::setAlgorithm方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: SlamLinearSolver

 g2o::SparseOptimizer * MapG2OReflector::g2oInit(){
   // graph construction
   typedef BlockSolver< BlockSolverTraits<-1, -1> >  SlamBlockSolver;
   typedef LinearSolverCSparse<SlamBlockSolver::PoseMatrixType> SlamLinearSolver;
   SlamLinearSolver* linearSolver = new SlamLinearSolver();
   linearSolver->setBlockOrdering(false);
   SlamBlockSolver* blockSolver = new SlamBlockSolver(linearSolver);
   OptimizationAlgorithmLevenberg* solverGauss   = new OptimizationAlgorithmLevenberg(blockSolver);
   //OptimizationAlgorithmGaussNewton* solverGauss   = new OptimizationAlgorithmGaussNewton(blockSolver);
   SparseOptimizer * graph = new SparseOptimizer();
   graph->setAlgorithm(solverGauss);
   g2o::ParameterSE3Offset* imuOffset = new ParameterSE3Offset();
   imuOffset->setOffset(Eigen::Isometry3d::Identity());
   imuOffset->setId(0);
   graph->addParameter(imuOffset);
   return graph;
 }
开发者ID:9578577,项目名称:g2o_frontend,代码行数:17,代码来源:map_g2o_reflector.cpp

示例2: main

int main()
{
  double euc_noise = 0.01;       // noise in position, m
  //  double outlier_ratio = 0.1;


  SparseOptimizer optimizer;
  optimizer.setVerbose(false);

  // variable-size block solver
  BlockSolverX::LinearSolverType * linearSolver = new LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
  BlockSolverX * solver_ptr = new BlockSolverX(linearSolver);
  g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

  optimizer.setAlgorithm(solver);

  vector<Vector3d> true_points;
  for (size_t i=0;i<1000; ++i)
  {
    true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
                                   Sample::uniform()-0.5,
                                   Sample::uniform()+10));
  }


  // set up two poses
  int vertex_id = 0;
  for (size_t i=0; i<2; ++i)
  {
    // set up rotation and translation for this node
    Vector3d t(0,0,i);
    Quaterniond q;
    q.setIdentity();

    Eigen::Isometry3d cam; // camera pose
    cam = q;
    cam.translation() = t;

    // set up node
    VertexSE3 *vc = new VertexSE3();
    vc->setEstimate(cam);

    vc->setId(vertex_id);      // vertex id

    cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;

    // set first cam pose fixed
    if (i==0)
      vc->setFixed(true);

    // add to optimizer
    optimizer.addVertex(vc);

    vertex_id++;                
  }

  // set up point matches
  for (size_t i=0; i<true_points.size(); ++i)
  {
    // get two poses
    VertexSE3* vp0 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
    VertexSE3* vp1 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);

    // calculate the relative 3D position of the point
    Vector3d pt0,pt1;
    pt0 = vp0->estimate().inverse() * true_points[i];
    pt1 = vp1->estimate().inverse() * true_points[i];

    // add in noise
    pt0 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));

    pt1 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));

    // form edge, with normals in varioius positions
    Vector3d nm0, nm1;
    nm0 << 0, i, 1;
    nm1 << 0, i, 1;
    nm0.normalize();
    nm1.normalize();

    Edge_V_V_GICP * e           // new edge with correct cohort for caching
        = new Edge_V_V_GICP(); 

    e->setVertex(0, vp0);      // first viewpoint

    e->setVertex(1, vp1);      // second viewpoint

    EdgeGICP meas;
    meas.pos0 = pt0;
    meas.pos1 = pt1;
    meas.normal0 = nm0;
    meas.normal1 = nm1;

    e->setMeasurement(meas);
//.........这里部分代码省略.........
开发者ID:2maz,项目名称:g2o,代码行数:101,代码来源:gicp_demo.cpp

示例3: main

int main(int argc, char **argv) {
  /************************************************************************
   *                          Input handling                              *
   ************************************************************************/
  float rows, cols, gain, square_size;
  float resolution, max_range, usable_range, angle, threshold;
  string g2oFilename, mapFilename;
  g2o::CommandArgs arg;
  arg.param("resolution", resolution, 0.05f, "resolution of the map (how much is in meters a pixel)");
  arg.param("threshold", threshold, -1.0f, "threshold to apply to the frequency map (values under the threshold are discarded)");
  arg.param("rows", rows, 0, "impose the resulting map to have this number of rows");
  arg.param("cols", cols, 0, "impose the resulting map to have this number of columns");
  arg.param("max_range", max_range, -1.0f, "max laser range to consider for map building");
  arg.param("usable_range", usable_range, -1.0f, "usable laser range for map building");
  arg.param("gain", gain, 1, "gain to impose to the pixels of the map");
  arg.param("square_size", square_size, 1, "square size of the region where increment the hits");
  arg.param("angle", angle, 0, "rotate the map of x degrees");
  arg.paramLeftOver("input_graph.g2o", g2oFilename, "", "input g2o graph to use to build the map", false);
  arg.paramLeftOver("output_map", mapFilename, "", "output filename where to save the map (without extension)", false);  
  arg.parseArgs(argc, argv);

  angle = angle*M_PI/180.0;

  /************************************************************************
   *                          Loading Graph                               *
   ************************************************************************/
  // Load graph
  typedef BlockSolver< BlockSolverTraits<-1, -1> >  SlamBlockSolver;
  typedef LinearSolverCSparse<SlamBlockSolver::PoseMatrixType> SlamLinearSolver;
  SlamLinearSolver *linearSolver = new SlamLinearSolver();
  linearSolver->setBlockOrdering(false);
  SlamBlockSolver *blockSolver = new SlamBlockSolver(linearSolver);
  OptimizationAlgorithmGaussNewton *solverGauss = new OptimizationAlgorithmGaussNewton(blockSolver);
  SparseOptimizer *graph = new SparseOptimizer();
  graph->setAlgorithm(solverGauss);    
  graph->load(g2oFilename.c_str());
  
  // Sort verteces
  vector<int> vertexIds(graph->vertices().size());
  int k = 0;
  for(OptimizableGraph::VertexIDMap::iterator it = graph->vertices().begin(); it != graph->vertices().end(); ++it) {
    vertexIds[k++] = (it->first);
  }  
  sort(vertexIds.begin(), vertexIds.end());
  
  /************************************************************************
   *                          Compute map size                            *
   ************************************************************************/
  // Check the entire graph to find map bounding box
  Eigen::Matrix2d boundingBox = Eigen::Matrix2d::Zero();
  std::vector<RobotLaser*> robotLasers;
  std::vector<SE2> robotPoses;
  double xmin=std::numeric_limits<double>::max();
  double xmax=std::numeric_limits<double>::min();
  double ymin=std::numeric_limits<double>::max();
  double ymax=std::numeric_limits<double>::min();

  SE2 baseTransform(0,0,angle);

  for(size_t i = 0; i < vertexIds.size(); ++i) {
    OptimizableGraph::Vertex *_v = graph->vertex(vertexIds[i]);
    VertexSE2 *v = dynamic_cast<VertexSE2*>(_v);
    if(!v) { continue; }
    v->setEstimate(baseTransform*v->estimate());
    OptimizableGraph::Data *d = v->userData();

    while(d) {
      RobotLaser *robotLaser = dynamic_cast<RobotLaser*>(d);
      if(!robotLaser) {
	d = d->next();
	continue;
      }      
      robotLasers.push_back(robotLaser);
      robotPoses.push_back(v->estimate());
      double x = v->estimate().translation().x();
      double y = v->estimate().translation().y();
      
      xmax = xmax > x+usable_range ? xmax : x+usable_range;
      ymax = ymax > y+usable_range ? ymax : y+usable_range;
      xmin = xmin < x-usable_range ? xmin : x-usable_range;
      ymin = ymin < y-usable_range ? ymin : y-usable_range;
 
      d = d->next();
    }
  }

  boundingBox(0,0)=xmin;
  boundingBox(0,1)=xmax;
  boundingBox(1,0)=ymin;
  boundingBox(1,1)=ymax;

  std::cout << "Found " << robotLasers.size() << " laser scans"<< std::endl;
  std::cout << "Bounding box: " << std::endl << boundingBox << std::endl; 
  if(robotLasers.size() == 0)  {
    std::cout << "No laser scans found ... quitting!" << std::endl;
    return 0;
  }

  /************************************************************************
   *                          Compute the map                             *
//.........这里部分代码省略.........
开发者ID:lfermin77,项目名称:g2o2ros,代码行数:101,代码来源:g2o2ros.cpp

示例4: main


//.........这里部分代码省略.........
  if (listSolvers) {
    solverFactory->listSolvers(cout);
  }

  if (listTypes) {
    Factory::instance()->printRegisteredTypes(cout, true);
  }

  if (listRobustKernels) {
    std::vector<std::string> kernels;
    RobustKernelFactory::instance()->fillKnownKernels(kernels);
    cout << "Robust Kernels:" << endl;
    for (size_t i = 0; i < kernels.size(); ++i) {
      cout << kernels[i] << endl;
    }
  }

  SparseOptimizer optimizer;
  optimizer.setVerbose(verbose);
  optimizer.setForceStopFlag(&hasToStop);

  SparseOptimizerTerminateAction* terminateAction = 0;
  if (maxIterations < 0) {
    cerr << "# setup termination criterion based on the gain of the iteration" << endl;
    maxIterations = maxIterationsWithGain;
    terminateAction = new SparseOptimizerTerminateAction;
    terminateAction->setGainThreshold(gain);
    terminateAction->setMaxIterations(maxIterationsWithGain);
    optimizer.addPostIterationAction(terminateAction);
  }

  // allocating the desired solver + testing whether the solver is okay
  OptimizationAlgorithmProperty solverProperty;
  optimizer.setAlgorithm(solverFactory->construct(strSolver, solverProperty));
  if (! optimizer.solver()) {
    cerr << "Error allocating solver. Allocating \"" << strSolver << "\" failed!" << endl;
    return 0;
  }
  
  if (solverProperties.size() > 0) {
    bool updateStatus = optimizer.solver()->updatePropertiesFromString(solverProperties);
    if (! updateStatus) {
      cerr << "Failure while updating the solver properties from the given string" << endl;
    }
  }
  if (solverProperties.size() > 0 || printSolverProperties) {
    optimizer.solver()->printProperties(cerr);
  }

  // Loading the input data
  if (loadLookup.size() > 0) {
    optimizer.setRenamedTypesFromString(loadLookup);
  }
  if (inputFilename.size() == 0) {
    cerr << "No input data specified" << endl;
    return 0;
  } else if (inputFilename == "-") {
    cerr << "Read input from stdin" << endl;
    if (!optimizer.load(cin)) {
      cerr << "Error loading graph" << endl;
      return 2;
    }
  } else {
    cerr << "Read input from " << inputFilename << endl;
    ifstream ifs(inputFilename.c_str());
    if (!ifs) {
开发者ID:PennPanda,项目名称:g2o,代码行数:67,代码来源:g2o.cpp

示例5: main

int main(int argc, char **argv)
{
  int num_points = 0;

  // check for arg, # of points to use in projection SBA
  if (argc > 1)
    num_points = atoi(argv[1]);

  double euc_noise = 0.1;      // noise in position, m
  double pix_noise = 1.0;       // pixel noise
  //  double outlier_ratio = 0.1;


  SparseOptimizer optimizer;
  optimizer.setVerbose(false);

  // variable-size block solver
  BlockSolverX::LinearSolverType * linearSolver
      = new LinearSolverCSparse<g2o
        ::BlockSolverX::PoseMatrixType>();


  BlockSolverX * solver_ptr
      = new BlockSolverX(linearSolver);

  g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);

  optimizer.setAlgorithm(solver);

  vector<Vector3d> true_points;
  for (size_t i=0;i<1000; ++i)
  {
    true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
                                   Sample::uniform()-0.5,
                                   Sample::uniform()+10));
  }


  // set up camera params
  Vector2d focal_length(500,500); // pixels
  Vector2d principal_point(320,240); // 640x480 image
  double baseline = 0.075;      // 7.5 cm baseline

  // set up camera params and projection matrices on vertices
  g2o::VertexSCam::setKcam(focal_length[0],focal_length[1],
                           principal_point[0],principal_point[1],
                           baseline);


  // set up two poses
  int vertex_id = 0;
  for (size_t i=0; i<2; ++i)
  {
    // set up rotation and translation for this node
    Vector3d t(0,0,i);
    Quaterniond q;
    q.setIdentity();

    Eigen::Isometry3d cam;           // camera pose
    cam = q;
    cam.translation() = t;

    // set up node
    VertexSCam *vc = new VertexSCam();
    vc->setEstimate(cam);
    vc->setId(vertex_id);      // vertex id

    cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;

    // set first cam pose fixed
    if (i==0)
      vc->setFixed(true);

    // make sure projection matrices are set
    vc->setAll();

    // add to optimizer
    optimizer.addVertex(vc);

    vertex_id++;                
  }

  // set up point matches for GICP
  for (size_t i=0; i<true_points.size(); ++i)
  {
    // get two poses
    VertexSE3* vp0 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
    VertexSE3* vp1 = 
      dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);

    // calculate the relative 3D position of the point
    Vector3d pt0,pt1;
    pt0 = vp0->estimate().inverse() * true_points[i];
    pt1 = vp1->estimate().inverse() * true_points[i];

    // add in noise
    pt0 += Vector3d(Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ),
                    Sample::gaussian(euc_noise ));
//.........这里部分代码省略.........
开发者ID:Aerobota,项目名称:c2tam,代码行数:101,代码来源:gicp_sba_demo.cpp

示例6: time

void Optimizer::optimizeUseG2O()
{


    // create the linear solver
    BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>();

    // create the block solver on top of the linear solver
    BlockSolverX* blockSolver = new BlockSolverX(linearSolver);

    // create the algorithm to carry out the optimization
    //OptimizationAlgorithmGaussNewton* optimizationAlgorithm = new OptimizationAlgorithmGaussNewton(blockSolver);
    OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver);

    // NOTE: We skip to fix a variable here, either this is stored in the file
    // itself or Levenberg will handle it.

    // create the optimizer to load the data and carry out the optimization
    SparseOptimizer optimizer;
    SparseOptimizer::initMultiThreading();
    optimizer.setVerbose(true);
    optimizer.setAlgorithm(optimizationAlgorithm);

    {
        pcl::ScopeTime time("G2O setup Graph vertices");
        for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count)
        {
            VertexSE3 *vertex = new VertexSE3;
            vertex->setId(cloud_count);
            Isometry3D affine = Isometry3D::Identity();
            affine.linear() = m_pointClouds[cloud_count]->sensor_orientation_.toRotationMatrix().cast<Isometry3D::Scalar>();
            affine.translation() = m_pointClouds[cloud_count]->sensor_origin_.block<3, 1>(0, 0).cast<Isometry3D::Scalar>();
            vertex->setEstimate(affine);
            optimizer.addVertex(vertex);
        }
        optimizer.vertex(0)->setFixed(true);
    }

    {
        pcl::ScopeTime time("G2O setup Graph edges");
        double trans_noise = 0.5, rot_noise = 0.5235;
        EdgeSE3::InformationType infomation = EdgeSE3::InformationType::Zero();
        infomation.block<3, 3>(0, 0) << trans_noise * trans_noise, 0, 0,
                                        0, trans_noise * trans_noise, 0,
                                        0, 0, trans_noise * trans_noise;
        infomation.block<3, 3>(3, 3) << rot_noise * rot_noise, 0, 0,
                                        0, rot_noise * rot_noise, 0,
                                        0, 0, rot_noise * rot_noise;
        for (size_t pair_count = 0; pair_count < m_cloudPairs.size(); ++pair_count)
        {
            CloudPair pair = m_cloudPairs[pair_count];
		    int from = pair.corresIdx.first;
		    int to = pair.corresIdx.second;
            EdgeSE3 *edge = new EdgeSE3;
		    edge->vertices()[0] = optimizer.vertex(from);
		    edge->vertices()[1] = optimizer.vertex(to);

            Eigen::Matrix<double, 6, 6> ATA = Eigen::Matrix<double, 6, 6>::Zero();
            Eigen::Matrix<double, 6, 1> ATb = Eigen::Matrix<double, 6, 1>::Zero();
#pragma unroll 8
            for (size_t point_count = 0; point_count < pair.corresPointIdx.size(); ++point_count) {
                int point_p = pair.corresPointIdx[point_count].first;
                int point_q = pair.corresPointIdx[point_count].second;
                PointType P = m_pointClouds[from]->points[point_p];
                PointType Q = m_pointClouds[to]->points[point_q];

                Eigen::Vector3d p = P.getVector3fMap().cast<double>();
                Eigen::Vector3d q = Q.getVector3fMap().cast<double>();
                Eigen::Vector3d Np = P.getNormalVector3fMap().cast<double>();

                double b = (p - q).dot(Np);

                Eigen::Matrix<double, 6, 1> A_p;
                A_p.block<3, 1>(0, 0) = p.cross(Np);
                A_p.block<3, 1>(3, 0) = Np;

                ATA += A_p * A_p.transpose();
                ATb += A_p * b;
            }

            Eigen::Matrix<double, 6, 1> X = ATA.ldlt().solve(ATb);
            Isometry3D measure = Isometry3D::Identity();
            float beta = X[0];
            float gammar = X[1];
            float alpha = X[2];
            measure.linear() = (Eigen::Matrix3d)Eigen::AngleAxisd(alpha, Eigen::Vector3d::UnitZ()) *
                Eigen::AngleAxisd(gammar, Eigen::Vector3d::UnitY()) *
                Eigen::AngleAxisd(beta, Eigen::Vector3d::UnitX());
            measure.translation() = X.block<3, 1>(3, 0);

            edge->setMeasurement(measure);

		    edge->setInformation(infomation);
            
            optimizer.addEdge(edge);
        }
    }

    optimizer.save("debug_preOpt.g2o");
    {
//.........这里部分代码省略.........
开发者ID:rickytan,项目名称:KALOFution,代码行数:101,代码来源:Optimizer.cpp


注:本文中的SparseOptimizer::setAlgorithm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。