本文整理汇总了C++中SparseOptimizer::setAlgorithm方法的典型用法代码示例。如果您正苦于以下问题:C++ SparseOptimizer::setAlgorithm方法的具体用法?C++ SparseOptimizer::setAlgorithm怎么用?C++ SparseOptimizer::setAlgorithm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SparseOptimizer
的用法示例。
在下文中一共展示了SparseOptimizer::setAlgorithm方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: SlamLinearSolver
g2o::SparseOptimizer * MapG2OReflector::g2oInit(){
// graph construction
typedef BlockSolver< BlockSolverTraits<-1, -1> > SlamBlockSolver;
typedef LinearSolverCSparse<SlamBlockSolver::PoseMatrixType> SlamLinearSolver;
SlamLinearSolver* linearSolver = new SlamLinearSolver();
linearSolver->setBlockOrdering(false);
SlamBlockSolver* blockSolver = new SlamBlockSolver(linearSolver);
OptimizationAlgorithmLevenberg* solverGauss = new OptimizationAlgorithmLevenberg(blockSolver);
//OptimizationAlgorithmGaussNewton* solverGauss = new OptimizationAlgorithmGaussNewton(blockSolver);
SparseOptimizer * graph = new SparseOptimizer();
graph->setAlgorithm(solverGauss);
g2o::ParameterSE3Offset* imuOffset = new ParameterSE3Offset();
imuOffset->setOffset(Eigen::Isometry3d::Identity());
imuOffset->setId(0);
graph->addParameter(imuOffset);
return graph;
}
示例2: main
int main()
{
double euc_noise = 0.01; // noise in position, m
// double outlier_ratio = 0.1;
SparseOptimizer optimizer;
optimizer.setVerbose(false);
// variable-size block solver
BlockSolverX::LinearSolverType * linearSolver = new LinearSolverDense<g2o::BlockSolverX::PoseMatrixType>();
BlockSolverX * solver_ptr = new BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
vector<Vector3d> true_points;
for (size_t i=0;i<1000; ++i)
{
true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
Sample::uniform()-0.5,
Sample::uniform()+10));
}
// set up two poses
int vertex_id = 0;
for (size_t i=0; i<2; ++i)
{
// set up rotation and translation for this node
Vector3d t(0,0,i);
Quaterniond q;
q.setIdentity();
Eigen::Isometry3d cam; // camera pose
cam = q;
cam.translation() = t;
// set up node
VertexSE3 *vc = new VertexSE3();
vc->setEstimate(cam);
vc->setId(vertex_id); // vertex id
cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;
// set first cam pose fixed
if (i==0)
vc->setFixed(true);
// add to optimizer
optimizer.addVertex(vc);
vertex_id++;
}
// set up point matches
for (size_t i=0; i<true_points.size(); ++i)
{
// get two poses
VertexSE3* vp0 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
VertexSE3* vp1 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);
// calculate the relative 3D position of the point
Vector3d pt0,pt1;
pt0 = vp0->estimate().inverse() * true_points[i];
pt1 = vp1->estimate().inverse() * true_points[i];
// add in noise
pt0 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
pt1 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
// form edge, with normals in varioius positions
Vector3d nm0, nm1;
nm0 << 0, i, 1;
nm1 << 0, i, 1;
nm0.normalize();
nm1.normalize();
Edge_V_V_GICP * e // new edge with correct cohort for caching
= new Edge_V_V_GICP();
e->setVertex(0, vp0); // first viewpoint
e->setVertex(1, vp1); // second viewpoint
EdgeGICP meas;
meas.pos0 = pt0;
meas.pos1 = pt1;
meas.normal0 = nm0;
meas.normal1 = nm1;
e->setMeasurement(meas);
//.........这里部分代码省略.........
示例3: main
int main(int argc, char **argv) {
/************************************************************************
* Input handling *
************************************************************************/
float rows, cols, gain, square_size;
float resolution, max_range, usable_range, angle, threshold;
string g2oFilename, mapFilename;
g2o::CommandArgs arg;
arg.param("resolution", resolution, 0.05f, "resolution of the map (how much is in meters a pixel)");
arg.param("threshold", threshold, -1.0f, "threshold to apply to the frequency map (values under the threshold are discarded)");
arg.param("rows", rows, 0, "impose the resulting map to have this number of rows");
arg.param("cols", cols, 0, "impose the resulting map to have this number of columns");
arg.param("max_range", max_range, -1.0f, "max laser range to consider for map building");
arg.param("usable_range", usable_range, -1.0f, "usable laser range for map building");
arg.param("gain", gain, 1, "gain to impose to the pixels of the map");
arg.param("square_size", square_size, 1, "square size of the region where increment the hits");
arg.param("angle", angle, 0, "rotate the map of x degrees");
arg.paramLeftOver("input_graph.g2o", g2oFilename, "", "input g2o graph to use to build the map", false);
arg.paramLeftOver("output_map", mapFilename, "", "output filename where to save the map (without extension)", false);
arg.parseArgs(argc, argv);
angle = angle*M_PI/180.0;
/************************************************************************
* Loading Graph *
************************************************************************/
// Load graph
typedef BlockSolver< BlockSolverTraits<-1, -1> > SlamBlockSolver;
typedef LinearSolverCSparse<SlamBlockSolver::PoseMatrixType> SlamLinearSolver;
SlamLinearSolver *linearSolver = new SlamLinearSolver();
linearSolver->setBlockOrdering(false);
SlamBlockSolver *blockSolver = new SlamBlockSolver(linearSolver);
OptimizationAlgorithmGaussNewton *solverGauss = new OptimizationAlgorithmGaussNewton(blockSolver);
SparseOptimizer *graph = new SparseOptimizer();
graph->setAlgorithm(solverGauss);
graph->load(g2oFilename.c_str());
// Sort verteces
vector<int> vertexIds(graph->vertices().size());
int k = 0;
for(OptimizableGraph::VertexIDMap::iterator it = graph->vertices().begin(); it != graph->vertices().end(); ++it) {
vertexIds[k++] = (it->first);
}
sort(vertexIds.begin(), vertexIds.end());
/************************************************************************
* Compute map size *
************************************************************************/
// Check the entire graph to find map bounding box
Eigen::Matrix2d boundingBox = Eigen::Matrix2d::Zero();
std::vector<RobotLaser*> robotLasers;
std::vector<SE2> robotPoses;
double xmin=std::numeric_limits<double>::max();
double xmax=std::numeric_limits<double>::min();
double ymin=std::numeric_limits<double>::max();
double ymax=std::numeric_limits<double>::min();
SE2 baseTransform(0,0,angle);
for(size_t i = 0; i < vertexIds.size(); ++i) {
OptimizableGraph::Vertex *_v = graph->vertex(vertexIds[i]);
VertexSE2 *v = dynamic_cast<VertexSE2*>(_v);
if(!v) { continue; }
v->setEstimate(baseTransform*v->estimate());
OptimizableGraph::Data *d = v->userData();
while(d) {
RobotLaser *robotLaser = dynamic_cast<RobotLaser*>(d);
if(!robotLaser) {
d = d->next();
continue;
}
robotLasers.push_back(robotLaser);
robotPoses.push_back(v->estimate());
double x = v->estimate().translation().x();
double y = v->estimate().translation().y();
xmax = xmax > x+usable_range ? xmax : x+usable_range;
ymax = ymax > y+usable_range ? ymax : y+usable_range;
xmin = xmin < x-usable_range ? xmin : x-usable_range;
ymin = ymin < y-usable_range ? ymin : y-usable_range;
d = d->next();
}
}
boundingBox(0,0)=xmin;
boundingBox(0,1)=xmax;
boundingBox(1,0)=ymin;
boundingBox(1,1)=ymax;
std::cout << "Found " << robotLasers.size() << " laser scans"<< std::endl;
std::cout << "Bounding box: " << std::endl << boundingBox << std::endl;
if(robotLasers.size() == 0) {
std::cout << "No laser scans found ... quitting!" << std::endl;
return 0;
}
/************************************************************************
* Compute the map *
//.........这里部分代码省略.........
示例4: main
//.........这里部分代码省略.........
if (listSolvers) {
solverFactory->listSolvers(cout);
}
if (listTypes) {
Factory::instance()->printRegisteredTypes(cout, true);
}
if (listRobustKernels) {
std::vector<std::string> kernels;
RobustKernelFactory::instance()->fillKnownKernels(kernels);
cout << "Robust Kernels:" << endl;
for (size_t i = 0; i < kernels.size(); ++i) {
cout << kernels[i] << endl;
}
}
SparseOptimizer optimizer;
optimizer.setVerbose(verbose);
optimizer.setForceStopFlag(&hasToStop);
SparseOptimizerTerminateAction* terminateAction = 0;
if (maxIterations < 0) {
cerr << "# setup termination criterion based on the gain of the iteration" << endl;
maxIterations = maxIterationsWithGain;
terminateAction = new SparseOptimizerTerminateAction;
terminateAction->setGainThreshold(gain);
terminateAction->setMaxIterations(maxIterationsWithGain);
optimizer.addPostIterationAction(terminateAction);
}
// allocating the desired solver + testing whether the solver is okay
OptimizationAlgorithmProperty solverProperty;
optimizer.setAlgorithm(solverFactory->construct(strSolver, solverProperty));
if (! optimizer.solver()) {
cerr << "Error allocating solver. Allocating \"" << strSolver << "\" failed!" << endl;
return 0;
}
if (solverProperties.size() > 0) {
bool updateStatus = optimizer.solver()->updatePropertiesFromString(solverProperties);
if (! updateStatus) {
cerr << "Failure while updating the solver properties from the given string" << endl;
}
}
if (solverProperties.size() > 0 || printSolverProperties) {
optimizer.solver()->printProperties(cerr);
}
// Loading the input data
if (loadLookup.size() > 0) {
optimizer.setRenamedTypesFromString(loadLookup);
}
if (inputFilename.size() == 0) {
cerr << "No input data specified" << endl;
return 0;
} else if (inputFilename == "-") {
cerr << "Read input from stdin" << endl;
if (!optimizer.load(cin)) {
cerr << "Error loading graph" << endl;
return 2;
}
} else {
cerr << "Read input from " << inputFilename << endl;
ifstream ifs(inputFilename.c_str());
if (!ifs) {
示例5: main
int main(int argc, char **argv)
{
int num_points = 0;
// check for arg, # of points to use in projection SBA
if (argc > 1)
num_points = atoi(argv[1]);
double euc_noise = 0.1; // noise in position, m
double pix_noise = 1.0; // pixel noise
// double outlier_ratio = 0.1;
SparseOptimizer optimizer;
optimizer.setVerbose(false);
// variable-size block solver
BlockSolverX::LinearSolverType * linearSolver
= new LinearSolverCSparse<g2o
::BlockSolverX::PoseMatrixType>();
BlockSolverX * solver_ptr
= new BlockSolverX(linearSolver);
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
optimizer.setAlgorithm(solver);
vector<Vector3d> true_points;
for (size_t i=0;i<1000; ++i)
{
true_points.push_back(Vector3d((Sample::uniform()-0.5)*3,
Sample::uniform()-0.5,
Sample::uniform()+10));
}
// set up camera params
Vector2d focal_length(500,500); // pixels
Vector2d principal_point(320,240); // 640x480 image
double baseline = 0.075; // 7.5 cm baseline
// set up camera params and projection matrices on vertices
g2o::VertexSCam::setKcam(focal_length[0],focal_length[1],
principal_point[0],principal_point[1],
baseline);
// set up two poses
int vertex_id = 0;
for (size_t i=0; i<2; ++i)
{
// set up rotation and translation for this node
Vector3d t(0,0,i);
Quaterniond q;
q.setIdentity();
Eigen::Isometry3d cam; // camera pose
cam = q;
cam.translation() = t;
// set up node
VertexSCam *vc = new VertexSCam();
vc->setEstimate(cam);
vc->setId(vertex_id); // vertex id
cerr << t.transpose() << " | " << q.coeffs().transpose() << endl;
// set first cam pose fixed
if (i==0)
vc->setFixed(true);
// make sure projection matrices are set
vc->setAll();
// add to optimizer
optimizer.addVertex(vc);
vertex_id++;
}
// set up point matches for GICP
for (size_t i=0; i<true_points.size(); ++i)
{
// get two poses
VertexSE3* vp0 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second);
VertexSE3* vp1 =
dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second);
// calculate the relative 3D position of the point
Vector3d pt0,pt1;
pt0 = vp0->estimate().inverse() * true_points[i];
pt1 = vp1->estimate().inverse() * true_points[i];
// add in noise
pt0 += Vector3d(Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ),
Sample::gaussian(euc_noise ));
//.........这里部分代码省略.........
示例6: time
void Optimizer::optimizeUseG2O()
{
// create the linear solver
BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCSparse<BlockSolverX::PoseMatrixType>();
// create the block solver on top of the linear solver
BlockSolverX* blockSolver = new BlockSolverX(linearSolver);
// create the algorithm to carry out the optimization
//OptimizationAlgorithmGaussNewton* optimizationAlgorithm = new OptimizationAlgorithmGaussNewton(blockSolver);
OptimizationAlgorithmLevenberg* optimizationAlgorithm = new OptimizationAlgorithmLevenberg(blockSolver);
// NOTE: We skip to fix a variable here, either this is stored in the file
// itself or Levenberg will handle it.
// create the optimizer to load the data and carry out the optimization
SparseOptimizer optimizer;
SparseOptimizer::initMultiThreading();
optimizer.setVerbose(true);
optimizer.setAlgorithm(optimizationAlgorithm);
{
pcl::ScopeTime time("G2O setup Graph vertices");
for (size_t cloud_count = 0; cloud_count < m_pointClouds.size(); ++cloud_count)
{
VertexSE3 *vertex = new VertexSE3;
vertex->setId(cloud_count);
Isometry3D affine = Isometry3D::Identity();
affine.linear() = m_pointClouds[cloud_count]->sensor_orientation_.toRotationMatrix().cast<Isometry3D::Scalar>();
affine.translation() = m_pointClouds[cloud_count]->sensor_origin_.block<3, 1>(0, 0).cast<Isometry3D::Scalar>();
vertex->setEstimate(affine);
optimizer.addVertex(vertex);
}
optimizer.vertex(0)->setFixed(true);
}
{
pcl::ScopeTime time("G2O setup Graph edges");
double trans_noise = 0.5, rot_noise = 0.5235;
EdgeSE3::InformationType infomation = EdgeSE3::InformationType::Zero();
infomation.block<3, 3>(0, 0) << trans_noise * trans_noise, 0, 0,
0, trans_noise * trans_noise, 0,
0, 0, trans_noise * trans_noise;
infomation.block<3, 3>(3, 3) << rot_noise * rot_noise, 0, 0,
0, rot_noise * rot_noise, 0,
0, 0, rot_noise * rot_noise;
for (size_t pair_count = 0; pair_count < m_cloudPairs.size(); ++pair_count)
{
CloudPair pair = m_cloudPairs[pair_count];
int from = pair.corresIdx.first;
int to = pair.corresIdx.second;
EdgeSE3 *edge = new EdgeSE3;
edge->vertices()[0] = optimizer.vertex(from);
edge->vertices()[1] = optimizer.vertex(to);
Eigen::Matrix<double, 6, 6> ATA = Eigen::Matrix<double, 6, 6>::Zero();
Eigen::Matrix<double, 6, 1> ATb = Eigen::Matrix<double, 6, 1>::Zero();
#pragma unroll 8
for (size_t point_count = 0; point_count < pair.corresPointIdx.size(); ++point_count) {
int point_p = pair.corresPointIdx[point_count].first;
int point_q = pair.corresPointIdx[point_count].second;
PointType P = m_pointClouds[from]->points[point_p];
PointType Q = m_pointClouds[to]->points[point_q];
Eigen::Vector3d p = P.getVector3fMap().cast<double>();
Eigen::Vector3d q = Q.getVector3fMap().cast<double>();
Eigen::Vector3d Np = P.getNormalVector3fMap().cast<double>();
double b = (p - q).dot(Np);
Eigen::Matrix<double, 6, 1> A_p;
A_p.block<3, 1>(0, 0) = p.cross(Np);
A_p.block<3, 1>(3, 0) = Np;
ATA += A_p * A_p.transpose();
ATb += A_p * b;
}
Eigen::Matrix<double, 6, 1> X = ATA.ldlt().solve(ATb);
Isometry3D measure = Isometry3D::Identity();
float beta = X[0];
float gammar = X[1];
float alpha = X[2];
measure.linear() = (Eigen::Matrix3d)Eigen::AngleAxisd(alpha, Eigen::Vector3d::UnitZ()) *
Eigen::AngleAxisd(gammar, Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(beta, Eigen::Vector3d::UnitX());
measure.translation() = X.block<3, 1>(3, 0);
edge->setMeasurement(measure);
edge->setInformation(infomation);
optimizer.addEdge(edge);
}
}
optimizer.save("debug_preOpt.g2o");
{
//.........这里部分代码省略.........