当前位置: 首页>>代码示例>>C++>>正文


C++ Space::set_bc_right_dirichlet方法代码示例

本文整理汇总了C++中Space::set_bc_right_dirichlet方法的典型用法代码示例。如果您正苦于以下问题:C++ Space::set_bc_right_dirichlet方法的具体用法?C++ Space::set_bc_right_dirichlet怎么用?C++ Space::set_bc_right_dirichlet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Space的用法示例。


在下文中一共展示了Space::set_bc_right_dirichlet方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main() {

  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData();
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  info("N_dof = %d", Space::get_num_dofs(space));
  // Plot the space.
  space->plot("space.gp");

  for (int g = 0; g < N_GRP; g++)  {
  	space->set_bc_right_dirichlet(g, flux_right_surf[g]);
	}
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_fuel_0_0, NULL, fuel);
  wf.add_matrix_form(0, 1, jacobian_fuel_0_1, NULL, fuel);
  wf.add_matrix_form(1, 0, jacobian_fuel_1_0, NULL, fuel);    
  wf.add_matrix_form(1, 1, jacobian_fuel_1_1, NULL, fuel);
    
  wf.add_vector_form(0, residual_fuel_0, NULL, fuel);  
  wf.add_vector_form(1, residual_fuel_1, NULL, fuel); 

  wf.add_vector_form_surf(0, residual_surf_left_0, BOUNDARY_LEFT);
  wf.add_vector_form_surf(1, residual_surf_left_1, BOUNDARY_LEFT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
	  	
  // Newton's loop.
  // Fill vector coeff_vec using dof and coeffs arrays in elements.
  double *coeff_vec = new double[Space::get_num_dofs(space)];
  solution_to_vector(space, coeff_vec);

  // Set up the solver, matrix, and rhs according to the solver selection.
  SparseMatrix* matrix = create_matrix(matrix_solver);
  Vector* rhs = create_vector(matrix_solver);
  Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

  int it = 1;
  while (1) {
    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Assemble the Jacobian matrix and residual vector.
    dp->assemble(matrix, rhs);

    // Calculate the l2-norm of residual vector.
    double res_norm = 0;
    for(int i=0; i<ndof; i++) res_norm += rhs->get(i)*rhs->get(i);
    res_norm = sqrt(res_norm);

    // Info for user.
    info("---- Newton iter %d, residual norm: %.15f", it, res_norm);

    // If l2 norm of the residual vector is within tolerance, then quit.
    // NOTE: at least one full iteration forced
    //       here because sometimes the initial
    //       residual on fine mesh is too small.
    if(res_norm < NEWTON_TOL && it > 1) break;

    // Multiply the residual vector with -1 since the matrix 
    // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n).
    for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i));

    // Solve the linear system.
    if(!solver->solve())
      error ("Matrix solver failed.\n");

    // Add \deltaY^{n+1} to Y^n.
    for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i];

    // If the maximum number of iteration has been reached, then quit.
    if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge.");
    
    // Copy coefficients from vector y to elements.
    vector_to_solution(coeff_vec, space);

    it++;
  }
  
  // Plot the solution.
  Linearizer l(space);
  l.plot_solution("solution.gp");

	// Calculate flux integral for comparison with the reference value.
	double I = calc_integrated_flux(space, 1, 60., 80.);
	double Iref = 134.9238787715397;
	info("I = %.13f, err = %.13f%%", I, 100.*(I - Iref)/Iref );
	
  info("Done.");
  return 1;
}
开发者ID:kameari,项目名称:hermes,代码行数:98,代码来源:main.cpp

示例2: main

int main() 
{		
  // Create space.
  // Transform input data to the format used by the "Space" constructor.
  SpaceData *md = new SpaceData(verbose);		
  Space* space = new Space(md->N_macroel, md->interfaces, md->poly_orders, md->material_markers, md->subdivisions, N_GRP, N_SLN);  
  delete md;
  
  // Enumerate basis functions, info for user.
  int ndof = Space::get_num_dofs(space);
  info("ndof: %d", ndof);

  // Plot the space.
  space->plot("space.gp");
  
  // Initial approximation of the dominant eigenvalue.
  double K_EFF = 1.0;
  // Initial approximation of the dominant eigenvector.
  double init_val = 1.0;

  for (int g = 0; g < N_GRP; g++)  
  {
    set_vertex_dofs_constant(space, init_val, g);
    space->set_bc_right_dirichlet(g, flux_right_surf[g]);
  }
  
  // Initialize the weak formulation.
  WeakForm wf(2);
  wf.add_matrix_form(0, 0, jacobian_fuel_0_0, NULL, fuel);
  wf.add_matrix_form(0, 0, jacobian_water_0_0, NULL, water);

  wf.add_matrix_form(0, 1, jacobian_fuel_0_1, NULL, fuel);
  wf.add_matrix_form(0, 1, jacobian_water_0_1, NULL, water);  

  wf.add_matrix_form(1, 0, jacobian_fuel_1_0, NULL, fuel);
  wf.add_matrix_form(1, 0, jacobian_water_1_0, NULL, water);

  wf.add_matrix_form(1, 1, jacobian_fuel_1_1, NULL, fuel);
  wf.add_matrix_form(1, 1, jacobian_water_1_1, NULL, water);
    
  wf.add_vector_form(0, residual_fuel_0, NULL, fuel);
  wf.add_vector_form(0, residual_water_0, NULL, water);  
  
  wf.add_vector_form(1, residual_fuel_1, NULL, fuel);
  wf.add_vector_form(1, residual_water_1, NULL, water); 

  wf.add_vector_form_surf(0, residual_surf_left_0, BOUNDARY_LEFT);
  wf.add_vector_form_surf(1, residual_surf_left_1, BOUNDARY_LEFT);

  // Initialize the FE problem.
  bool is_linear = false;
  DiscreteProblem *dp = new DiscreteProblem(&wf, space, is_linear);
  
  Linearizer l(space);
  char solution_file[32];

  // Source iteration
  int i;
  int current_solution = 0, previous_solution = 1;
  double K_EFF_old;
  for (i = 0; i < Max_SI; i++)
  {	
    // Plot the critical (i.e. steady-state) flux in the actual iteration.
    sprintf(solution_file, "solution_%d.gp", i);
    l.plot_solution(solution_file); 		
	  
    // Store the previous solution (used at the right-hand side).
    for (int g = 0; g < N_GRP; g++)
      copy_dofs(current_solution, previous_solution, space, g);

    // Obtain the number of degrees of freedom.
    int ndof = Space::get_num_dofs(space);

    // Fill vector coeff_vec using dof and coeffs arrays in elements.
    double *coeff_vec = new double[Space::get_num_dofs(space)];
    get_coeff_vector(space, coeff_vec);
  
    // Set up the solver, matrix, and rhs according to the solver selection.
    SparseMatrix* matrix = create_matrix(matrix_solver);
    Vector* rhs = create_vector(matrix_solver);
    Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);
  
    int it = 1;
    while (1) 
    {
      // Obtain the number of degrees of freedom.
      int ndof = Space::get_num_dofs(space);

      // Assemble the Jacobian matrix and residual vector.
      dp->assemble(coeff_vec, matrix, rhs);

      // Calculate the l2-norm of residual vector.
      double res_l2_norm = get_l2_norm(rhs);

      // Info for user.
      info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm);

      // If l2 norm of the residual vector is within tolerance, then quit.
      // NOTE: at least one full iteration forced
      //       here because sometimes the initial
//.........这里部分代码省略.........
开发者ID:alieed,项目名称:hermes,代码行数:101,代码来源:main.cpp


注:本文中的Space::set_bc_right_dirichlet方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。