当前位置: 首页>>代码示例>>C++>>正文


C++ Space::get_mesh方法代码示例

本文整理汇总了C++中Space::get_mesh方法的典型用法代码示例。如果您正苦于以下问题:C++ Space::get_mesh方法的具体用法?C++ Space::get_mesh怎么用?C++ Space::get_mesh使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Space的用法示例。


在下文中一共展示了Space::get_mesh方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;

  cpu_time.tick();
  // Load the mesh.
  Mesh mesh, basemesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &basemesh);

  // Perform initial mesh refinements.
  mesh.copy(&basemesh);
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(3, INIT_REF_NUM_BDY);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d.", ndof);

  // Create an H1 space for the initial coarse mesh solution.
  H1Space init_space(&basemesh, bc_types, essential_bc_values, P_INIT);

  // Create a selector which will select optimal candidate.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Solutions for the time stepping and the Newton's method.
  Solution sln, ref_sln, sln_prev_time;
  
  // Adapt mesh to represent initial condition with given accuracy.
  info("Mesh adaptivity to an exact function:");
  // Initialize views.
  char title_init[200];
  sprintf(title_init, "Projection of initial condition");
  ScalarView* view_init = new ScalarView(title_init, new WinGeom(0, 0, 410, 300));
  sprintf(title_init, "Initial mesh");
  OrderView* ordview_init = new OrderView(title_init, new WinGeom(420, 0, 350, 300));
  view_init->fix_scale_width(80);
  int as = 1; bool done = false;
  do
  {
    // Setup space for the reference solution.
    Space *rspace = construct_refined_space(&init_space);

    // Assign the function f() to the fine mesh.
    ref_sln.set_exact(rspace->get_mesh(), init_cond);

    // Project the function f() on the coarse mesh.
    OGProjection::project_global(&init_space, &ref_sln, &sln_prev_time, matrix_solver);

    // Calculate element errors and total error estimate.
    Adapt adaptivity(&init_space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity.calc_err_est(&sln_prev_time, &ref_sln, solutions_for_adapt, 
                         HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    info("Step %d, ndof %d, proj_error %g%%", as, Space::get_num_dofs(&init_space), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else {
      double to_be_processed = 0;
      done = adaptivity.adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY, to_be_processed);

      if (Space::get_num_dofs(&init_space) >= NDOF_STOP) done = true;

      view_init->show(&sln_prev_time);
      char title_init[100];
      sprintf(title_init, "Initial mesh, step %d", as);
      ordview_init->set_title(title_init);
      ordview_init->show(&init_space);
    }
    as++;
  }
  while (done == false);
  
  // Initialize the weak formulation.
  WeakForm wf;
  if (TIME_INTEGRATION == 1) {
    wf.add_matrix_form(jac_form_vol_euler, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_euler, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_euler, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_euler, jac_form_surf_6_ord, BDY_6);
    wf.add_vector_form(res_form_vol_euler, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_euler, res_form_surf_1_ord, BDY_1); 
    wf.add_vector_form_surf(res_form_surf_4_euler, res_form_surf_4_ord, BDY_4);
    wf.add_vector_form_surf(res_form_surf_6_euler, res_form_surf_6_ord, BDY_6);
  }
  else {
    wf.add_matrix_form(jac_form_vol_cranic, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_cranic, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_cranic, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_cranic, jac_form_surf_6_ord, BDY_6); 
    wf.add_vector_form(res_form_vol_cranic, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_cranic, res_form_surf_1_ord, BDY_1, 
//.........这里部分代码省略.........
开发者ID:FranzGrenvicht,项目名称:hermes,代码行数:101,代码来源:main.cpp

示例2: main

int main(int argc, char* argv[])
{
  // Time measurement.
  TimePeriod cpu_time;

  cpu_time.tick();
  // Load the mesh.
  Mesh mesh, basemesh;
  H2DReader mloader;
  mloader.load("domain.mesh", &basemesh);

  // Perform initial mesh refinements.
  mesh.copy(&basemesh);
  for(int i = 0; i < INIT_REF_NUM; i++) mesh.refine_all_elements();
  mesh.refine_towards_boundary(3, INIT_REF_NUM_BDY);

  // Create an H1 space with default shapeset.
  H1Space space(&mesh, bc_types, essential_bc_values, P_INIT);
  int ndof = Space::get_num_dofs(&space);
  info("ndof = %d.", ndof);

  // Create a selector which will select optimal candidate.
  H1ProjBasedSelector selector(CAND_LIST, CONV_EXP, H2DRS_DEFAULT_ORDER);

  // Solutions for the time stepping and the Newton's method.
  Solution sln, ref_sln, sln_prev_time;
  
  // Adapt mesh to represent initial condition with given accuracy.
  info("Mesh adaptivity to an exact function:");

  int as = 1; bool done = false;
  do
  {
    // Setup space for the reference solution.
    Space *rspace = construct_refined_space(&space);

    // Assign the function f() to the fine mesh.
    ref_sln.set_exact(rspace->get_mesh(), init_cond);

    // Project the function f() on the coarse mesh.
    OGProjection::project_global(&space, &ref_sln, &sln_prev_time, matrix_solver);

    // Calculate element errors and total error estimate.
    Adapt adaptivity(&space, HERMES_H1_NORM);
    bool solutions_for_adapt = true;
    double err_est_rel = adaptivity.calc_err_est(&sln_prev_time, &ref_sln, solutions_for_adapt, HERMES_TOTAL_ERROR_REL | HERMES_ELEMENT_ERROR_REL) * 100;

    info("Step %d, ndof %d, proj_error %g%%", as, Space::get_num_dofs(&space), err_est_rel);

    // If err_est_rel too large, adapt the mesh.
    if (err_est_rel < ERR_STOP) done = true;
    else {
      double to_be_processed = 0;
      done = adaptivity.adapt(&selector, THRESHOLD, STRATEGY, MESH_REGULARITY, to_be_processed);

      if (Space::get_num_dofs(&space) >= NDOF_STOP) done = true;

    }
    as++;
  }
  while (done == false);
  
  // Project the initial condition on the FE space
  // to obtain initial coefficient vector for the Newton's method.
  info("Projecting initial condition to obtain coefficient vector for Newton on coarse mesh.");
  scalar* coeff_vec_coarse = new scalar[Space::get_num_dofs(&space)];
  OGProjection::project_global(&space, init_cond, coeff_vec_coarse, matrix_solver);
  OGProjection::project_global(&space, &sln_prev_time, &sln, matrix_solver);

  // Initialize the weak formulation.
  WeakForm wf;
  if (TIME_INTEGRATION == 1) {
    wf.add_matrix_form(jac_form_vol_euler, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_euler, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_euler, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_euler, jac_form_surf_6_ord, BDY_6);
    wf.add_vector_form(res_form_vol_euler, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_euler, res_form_surf_1_ord, BDY_1); 
    wf.add_vector_form_surf(res_form_surf_4_euler, res_form_surf_4_ord, BDY_4);
    wf.add_vector_form_surf(res_form_surf_6_euler, res_form_surf_6_ord, BDY_6);
  }
  else {
    wf.add_matrix_form(jac_form_vol_cranic, jac_form_vol_ord, HERMES_UNSYM, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_matrix_form_surf(jac_form_surf_1_cranic, jac_form_surf_1_ord, BDY_1);
    wf.add_matrix_form_surf(jac_form_surf_4_cranic, jac_form_surf_4_ord, BDY_4);
    wf.add_matrix_form_surf(jac_form_surf_6_cranic, jac_form_surf_6_ord, BDY_6); 
    wf.add_vector_form(res_form_vol_cranic, res_form_vol_ord, HERMES_ANY, 
                       &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_1_cranic, res_form_surf_1_ord, BDY_1, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_4_cranic, res_form_surf_4_ord, BDY_4, 
			    &sln_prev_time);
    wf.add_vector_form_surf(res_form_surf_6_cranic, res_form_surf_6_ord, BDY_6, 
			    &sln_prev_time);
  }

  // Error estimate and discrete problem size as a function of physical time.
//.........这里部分代码省略.........
开发者ID:dugankevin,项目名称:hermes,代码行数:101,代码来源:main.cpp


注:本文中的Space::get_mesh方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。