当前位置: 首页>>代码示例>>C++>>正文


C++ SolutionPtr::solve方法代码示例

本文整理汇总了C++中SolutionPtr::solve方法的典型用法代码示例。如果您正苦于以下问题:C++ SolutionPtr::solve方法的具体用法?C++ SolutionPtr::solve怎么用?C++ SolutionPtr::solve使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SolutionPtr的用法示例。


在下文中一共展示了SolutionPtr::solve方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main

int main(int argc, char *argv[])
{
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL); // initialize MPI
  
  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options
  
  int numElements = 3;
  double xLeft = 0.0, xRight = 1.0;
  int polyOrder = 1, delta_k = 1;
  
  cmdp.setOption("numElements", &numElements );
  cmdp.setOption("polyOrder", &polyOrder );
  cmdp.setOption("delta_k", &delta_k );
  cmdp.setOption("xLeft", &xLeft );
  cmdp.setOption("xRight", &xRight );
  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }
  int spaceDim = 1;
  bool conformingTraces = true; // conformingTraces argument has no effect in 1D
  PoissonFormulation poissonForm(spaceDim, conformingTraces);
  
  MeshPtr mesh = MeshFactory::intervalMesh(poissonForm.bf(), xLeft, xRight, numElements, polyOrder + 1, delta_k); // 1D equispaced
  
  RHSPtr rhs = RHS::rhs(); // zero RHS
  IPPtr ip = poissonForm.bf()->graphNorm();
  BCPtr bc = BC::bc();
  bc->addDirichlet(poissonForm.phi_hat(), SpatialFilter::allSpace(), Function::zero());
  
  SolutionPtr solution = Solution::solution(poissonForm.bf(), mesh, bc, rhs, ip);
  solution->solve();
  
  GDAMinimumRule* minRule = dynamic_cast<GDAMinimumRule*>(mesh->globalDofAssignment().get());
//  minRule->printGlobalDofInfo();
  
  Teuchos::RCP<Epetra_CrsMatrix> A = solution->getStiffnessMatrix();
  EpetraExt::RowMatrixToMatrixMarketFile("A.dat",*A, NULL, NULL, false);
  
  HDF5Exporter exporter(mesh);
  
  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:47,代码来源:Poisson1D.cpp

示例2: main

int main(int argc, char *argv[])
{
#ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS
  cout << "NOTE: enabling floating point exceptions for divide by zero.\n";
  _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
  int rank = Teuchos::GlobalMPISession::getRank();

#ifdef HAVE_MPI
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
  //cout << "rank: " << rank << " of " << numProcs << endl;
#else
  Epetra_SerialComm Comm;
#endif

  Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to.

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  double minTol = 1e-8;

  bool use3D = false;
  int refCount = 10;

  int k = 4; // poly order for field variables
  int delta_k = use3D ? 3 : 2;   // test space enrichment
  int k_coarse = 0;

  bool useMumps = true;
  bool useGMGSolver = true;

  bool enforceOneIrregularity = true;
  bool useStaticCondensation = false;
  bool conformingTraces = false;
  bool useDiagonalScaling = false; // of the global stiffness matrix in GMGSolver

  bool printRefinementDetails = false;

  bool useWeightedGraphNorm = true; // graph norm scaled according to units, more or less

  int numCells = 2;

  int AztecOutputLevel = 1;
  int gmgMaxIterations = 10000;
  int smootherOverlap = 0;
  double relativeTol = 1e-6;
  double D = 1.0; // characteristic length scale

  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("k_coarse", &k_coarse, "polynomial order for field variables on coarse mesh");
  cmdp.setOption("numRefs",&refCount,"number of refinements");
  cmdp.setOption("D", &D, "domain dimension");
  cmdp.setOption("useConformingTraces", "useNonConformingTraces", &conformingTraces);
  cmdp.setOption("enforceOneIrregularity", "dontEnforceOneIrregularity", &enforceOneIrregularity);

  cmdp.setOption("smootherOverlap", &smootherOverlap, "overlap for smoother");

  cmdp.setOption("printRefinementDetails", "dontPrintRefinementDetails", &printRefinementDetails);
  cmdp.setOption("azOutput", &AztecOutputLevel, "Aztec output level");
  cmdp.setOption("numCells", &numCells, "number of cells in the initial mesh");
  cmdp.setOption("useScaledGraphNorm", "dontUseScaledGraphNorm", &useWeightedGraphNorm);
//  cmdp.setOption("gmgTol", &gmgTolerance, "tolerance for GMG convergence");
  cmdp.setOption("relativeTol", &relativeTol, "Energy error-relative tolerance for iterative solver.");
  cmdp.setOption("gmgMaxIterations", &gmgMaxIterations, "tolerance for GMG convergence");

  bool enhanceUField = false;
  cmdp.setOption("enhanceUField", "dontEnhanceUField", &enhanceUField);
  cmdp.setOption("useStaticCondensation", "dontUseStaticCondensation", &useStaticCondensation);

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  double width = D, height = D, depth = D;

  VarFactory varFactory;
  // fields:
  VarPtr u = varFactory.fieldVar("u", L2);
  VarPtr sigma = varFactory.fieldVar("\\sigma", VECTOR_L2);

  FunctionPtr n = Function::normal();
  // traces:
  VarPtr u_hat;

  if (conformingTraces)
  {
    u_hat = varFactory.traceVar("\\widehat{u}", u);
  }
  else
  {
    cout << "Note: using non-conforming traces.\n";
    u_hat = varFactory.traceVar("\\widehat{u}", u, L2);
  }
//.........这里部分代码省略.........
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:PoissonGMGDriver.cpp

示例3: main

int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);

  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int commRank = Teuchos::GlobalMPISession::getRank();

  Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to.

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  // problem parameters:
  int spaceDim = 2;
  double Re = 40;
  bool steady = false;
  string problemChoice = "TaylorGreen";
  int numRefs = 1;
  int p = 2, delta_p = 2;
  int numXElems = 1;
  int numTElems = 1;
  int numSlabs = 1;
  bool useConformingTraces = false;
  string solverChoice = "KLU";
  string multigridStrategyString = "W-cycle";
  bool useCondensedSolve = false;
  bool useConjugateGradient = true;
  bool logFineOperator = false;
  // double solverTolerance = 1e-8;
  double nonlinearTolerance = 1e-5;
  // int maxLinearIterations = 10000;
  int maxNonlinearIterations = 20;
  int cgMaxIterations = 10000;
  double cgTol = 1e-8;
  bool computeL2Error = false;
  bool exportSolution = false;
  bool saveSolution = false;
  bool loadSolution = false;
  int loadRef = 0;
  int loadDirRef = 0;
  string norm = "Graph";
  string rootDir = ".";
  string tag="";
  cmdp.setOption("spaceDim", &spaceDim, "spatial dimension");
  cmdp.setOption("Re", &Re, "Re");
  cmdp.setOption("steady", "transient", &steady, "use steady incompressible Navier-Stokes");
  cmdp.setOption("problem", &problemChoice, "Kovasznay, TaylorGreen");
  cmdp.setOption("polyOrder",&p,"polynomial order for field variable u");
  cmdp.setOption("delta_p", &delta_p, "test space polynomial order enrichment");
  cmdp.setOption("numRefs",&numRefs,"number of refinements");
  cmdp.setOption("numXElems",&numXElems,"number of elements in x direction");
  cmdp.setOption("numTElems",&numTElems,"number of elements in t direction");
  cmdp.setOption("numSlabs",&numSlabs,"number of time slabs to use");
  cmdp.setOption("norm", &norm, "norm");
  cmdp.setOption("conformingTraces", "nonconformingTraces", &useConformingTraces, "use conforming traces");
  cmdp.setOption("solver", &solverChoice, "KLU, SuperLU, MUMPS, GMG-Direct, GMG-ILU, GMG-IC");
  cmdp.setOption("multigridStrategy", &multigridStrategyString, "Multigrid strategy: V-cycle, W-cycle, Full, or Two-level");
  cmdp.setOption("useCondensedSolve", "useStandardSolve", &useCondensedSolve);
  cmdp.setOption("CG", "GMRES", &useConjugateGradient);
  cmdp.setOption("logFineOperator", "dontLogFineOperator", &logFineOperator);
  // cmdp.setOption("solverTolerance", &solverTolerance, "iterative solver tolerance");
  cmdp.setOption("nonlinearTolerance", &nonlinearTolerance, "nonlinear solver tolerance");
  // cmdp.setOption("maxLinearIterations", &maxLinearIterations, "maximum number of iterations for linear solver");
  cmdp.setOption("maxNonlinearIterations", &maxNonlinearIterations, "maximum number of iterations for Newton solver");
  cmdp.setOption("exportDir", &rootDir, "export directory");
  cmdp.setOption("computeL2Error", "skipL2Error", &computeL2Error, "compute L2 error");
  cmdp.setOption("exportSolution", "skipExport", &exportSolution, "export solution to HDF5");
  cmdp.setOption("saveSolution", "skipSave", &saveSolution, "save mesh and solution to HDF5");
  cmdp.setOption("loadSolution", "skipLoad", &loadSolution, "load mesh and solution from HDF5");
  cmdp.setOption("loadRef", &loadRef, "load refinement number");
  cmdp.setOption("loadDirRef", &loadDirRef, "which refinement directory to load from");
  cmdp.setOption("tag", &tag, "output tag");

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  map<string, Teuchos::RCP<IncompressibleProblem>> problems;
  problems["ManufacturedSolution"] = Teuchos::rcp(new IncompressibleManufacturedSolution(steady, Re, numXElems));
  problems["Kovasznay"] = Teuchos::rcp(new KovasznayProblem(steady, Re));
  problems["TaylorGreen"] = Teuchos::rcp(new TaylorGreenProblem(steady, Re, numXElems, numSlabs));
  problems["Cylinder"] = Teuchos::rcp(new CylinderProblem(steady, Re, numSlabs));
  problems["SquareCylinder"] = Teuchos::rcp(new SquareCylinderProblem(steady, Re, numSlabs));
  Teuchos::RCP<IncompressibleProblem> problem = problems.at(problemChoice);

  // if (commRank == 0)
  // {
  //   Solver::printAvailableSolversReport();
  //   cout << endl;
  // }
  Teuchos::RCP<Time> totalTimer = Teuchos::TimeMonitor::getNewCounter("Total Time");
//.........这里部分代码省略.........
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:TSpaceTimeIncompressible.cpp

示例4: main


//.........这里部分代码省略.........
    //      cout << "fakeRHSIntegrals:\n" << fakeRHSIntegrals;
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      // pick out the ones for testOne:
      massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
    }
    // find the largest:
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
    }
    for (int i=0; i<elems.size(); i++)
    {
      int cellID = cellIDs[i];
      maxCellMeasure = max(maxCellMeasure,cellMeasures(i));
      minCellMeasure = min(minCellMeasure,cellMeasures(i));
      maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
      totalMassFlux += massFluxIntegral[cellID];
      totalAbsMassFlux += abs( massFluxIntegral[cellID] );
    }
  }
  if (rank==0)
  {
    cout << "largest mass flux: " << maxMassFluxIntegral << endl;
    cout << "total mass flux: " << totalMassFlux << endl;
    cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
    cout << "largest h: " << sqrt(maxCellMeasure) << endl;
    cout << "smallest h: " << sqrt(minCellMeasure) << endl;
    cout << "ratio of largest / smallest h: " << sqrt(maxCellMeasure) / sqrt(minCellMeasure) << endl;
  }
  if (rank == 0)
  {
    cout << "phi ID: " << phi->ID() << endl;
    cout << "psi1 ID: " << psi_1->ID() << endl;
    cout << "psi2 ID: " << psi_2->ID() << endl;

    cout << "streamMesh has " << streamMesh->numActiveElements() << " elements.\n";
    cout << "solving for approximate stream function...\n";
  }

  streamSolution->solve(useMumps);
  energyErrorTotal = streamSolution->energyErrorTotal();
  if (rank == 0)
  {
    cout << "...solved.\n";
    cout << "Stream mesh has energy error: " << energyErrorTotal << endl;
  }

  if (rank==0)
  {
    solution->writeToVTK("nsCavitySoln.vtk");
    if (! meshHasTriangles )
    {
      massFlux->writeBoundaryValuesToMATLABFile(solution->mesh(), "massFlux.dat");
      u_mag->writeValuesToMATLABFile(solution->mesh(), "u_mag.m");
      u_div->writeValuesToMATLABFile(solution->mesh(), "u_div.m");
      solution->writeFieldsToFile(u1->ID(), "u1.m");
      solution->writeFluxesToFile(u1hat->ID(), "u1_hat.dat");
      solution->writeFieldsToFile(u2->ID(), "u2.m");
      solution->writeFluxesToFile(u2hat->ID(), "u2_hat.dat");
      solution->writeFieldsToFile(p->ID(), "p.m");
      streamSolution->writeFieldsToFile(phi->ID(), "phi.m");

      streamSolution->writeFluxesToFile(phi_hat->ID(), "phi_hat.dat");
      streamSolution->writeFieldsToFile(psi_1->ID(), "psi1.m");
      streamSolution->writeFieldsToFile(psi_2->ID(), "psi2.m");
      vorticity->writeValuesToMATLABFile(streamMesh, "vorticity.m");

      FunctionPtr ten = Teuchos::rcp( new ConstantScalarFunction(10) );
      ten->writeBoundaryValuesToMATLABFile(solution->mesh(), "skeleton.dat");
      cout << "wrote files: u_mag.m, u_div.m, u1.m, u1_hat.dat, u2.m, u2_hat.dat, p.m, phi.m, vorticity.m.\n";
    }
    else
    {
      solution->writeToFile(u1->ID(), "u1.dat");
      solution->writeToFile(u2->ID(), "u2.dat");
      solution->writeToFile(u2->ID(), "p.dat");
      cout << "wrote files: u1.dat, u2.dat, p.dat\n";
    }

    FieldContainer<double> points = pointGrid(0, 1, 0, 1, 100);
    FieldContainer<double> pointData = solutionData(points, streamSolution, phi);
    GnuPlotUtil::writeXYPoints("phi_patch_navierStokes_cavity.dat", pointData);
    set<double> patchContourLevels = diagonalContourLevels(pointData,1);
    vector<string> patchDataPath;
    patchDataPath.push_back("phi_patch_navierStokes_cavity.dat");
    GnuPlotUtil::writeContourPlotScript(patchContourLevels, patchDataPath, "lidCavityNavierStokes.p");

    GnuPlotUtil::writeExactMeshSkeleton("lid_navierStokes_continuation_adaptive", mesh, 2);

    writePatchValues(0, 1, 0, 1, streamSolution, phi, "phi_patch.m");
    writePatchValues(0, .1, 0, .1, streamSolution, phi, "phi_patch_detail.m");
    writePatchValues(0, .01, 0, .01, streamSolution, phi, "phi_patch_minute_detail.m");
    writePatchValues(0, .001, 0, .001, streamSolution, phi, "phi_patch_minute_minute_detail.m");
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:NavierStokesCavityFlowContinuationAdaptive.cpp

示例5: main


//.........这里部分代码省略.........
  VarPtr tau2 = vf->testVar("tau2", HDIV);
  VarPtr q = vf->testVar("q", HGRAD);

  BFPtr bf = Teuchos::rcp( new BF(vf) );

  bf->addTerm(1./mu*sigma1, tau1);
  bf->addTerm(1./mu*sigma2, tau2);
  bf->addTerm(u1, tau1->div());
  bf->addTerm(u2, tau2->div());
  bf->addTerm(-u1hat, tau1->dot_normal());
  bf->addTerm(-u2hat, tau2->dot_normal());

  bf->addTerm(sigma1, v1->grad());
  bf->addTerm(sigma2, v2->grad());
  bf->addTerm(-p, v1->dx());
  bf->addTerm(-p, v2->dy());
  bf->addTerm(t1c, v1);
  bf->addTerm(t2c, v2);
  bf->addTerm(mu*permInv*u1, v1);
  bf->addTerm(mu*permInv*u2, v2);

  bf->addTerm(-u1, q->dx());
  bf->addTerm(-u2, q->dy());
  bf->addTerm(u1hat, q->times_normal_x());
  bf->addTerm(u2hat, q->times_normal_y());

  RHSPtr rhs = RHS::rhs();

  BCPtr bc = BC::bc();

  SpatialFilterPtr y_equals_one = SpatialFilter::matchingY(1.0);
  SpatialFilterPtr y_equals_zero = SpatialFilter::matchingY(0);
  SpatialFilterPtr x_equals_one = SpatialFilter::matchingX(1.0);
  SpatialFilterPtr x_equals_zero = SpatialFilter::matchingX(0.0);
  bc->addDirichlet(u1hat, y_equals_zero, u1_exact);
  bc->addDirichlet(u2hat, y_equals_zero, u2_exact);
  bc->addDirichlet(u1hat, x_equals_zero, u1_exact);
  bc->addDirichlet(u2hat, x_equals_zero, u2_exact);
  bc->addDirichlet(u1hat, y_equals_one, u1_exact);
  bc->addDirichlet(u2hat, y_equals_one, u2_exact);
  bc->addDirichlet(u1hat, x_equals_one, u1_exact);
  bc->addDirichlet(u2hat, x_equals_one, u2_exact);
  bc->addZeroMeanConstraint(p);

  MeshPtr mesh = MeshFactory::quadMesh(bf, k+1, delta_k, 1, 1, 4, 4);

  map<string, IPPtr> brinkmanIPs;
  brinkmanIPs["Graph"] = bf->graphNorm();

  brinkmanIPs["Decoupled"] = Teuchos::rcp(new IP);
  brinkmanIPs["Decoupled"]->addTerm(tau1);
  brinkmanIPs["Decoupled"]->addTerm(tau2);
  brinkmanIPs["Decoupled"]->addTerm(tau1->div());
  brinkmanIPs["Decoupled"]->addTerm(tau2->div());
  brinkmanIPs["Decoupled"]->addTerm(permInv*v1);
  brinkmanIPs["Decoupled"]->addTerm(permInv*v2);
  brinkmanIPs["Decoupled"]->addTerm(v1->grad());
  brinkmanIPs["Decoupled"]->addTerm(v2->grad());
  brinkmanIPs["Decoupled"]->addTerm(q);
  brinkmanIPs["Decoupled"]->addTerm(q->grad());

  // brinkmanIPs["CoupledRobust"] = Teuchos::rcp(new IP);
  // brinkmanIPs["CoupledRobust"]->addTerm(tau->div()-beta*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(one/Function<double>::h(),Function<double>::constant(1./sqrt(epsilon)))*tau);
  // brinkmanIPs["CoupledRobust"]->addTerm(sqrt(epsilon)*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(beta*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(sqrt(epsilon)*one/Function<double>::h(),one)*v);

  IPPtr ip = brinkmanIPs[norm];

  SolutionPtr soln = TSolution<double>::solution(mesh, bc, rhs, ip);

  double threshold = 0.20;
  RefinementStrategy refStrategy(soln, threshold);

  ostringstream refName;
  refName << "brinkman";
  HDF5Exporter exporter(mesh,refName.str());

  for (int refIndex=0; refIndex <= numRefs; refIndex++)
  {
    soln->solve(false);

    double energyError = soln->energyErrorTotal();
    if (commRank == 0)
    {
      // if (refIndex > 0)
      // refStrategy.printRefinementStatistics(refIndex-1);
      cout << "Refinement:\t " << refIndex << " \tElements:\t " << mesh->numActiveElements()
           << " \tDOFs:\t " << mesh->numGlobalDofs() << " \tEnergy Error:\t " << energyError << endl;
    }

    exporter.exportSolution(soln, refIndex);

    if (refIndex != numRefs)
      refStrategy.refine();
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:BrinkmanDriver.cpp

示例6: main

int main(int argc, char *argv[])
{
  Teuchos::GlobalMPISession mpiSession(&argc, &argv, NULL); // initialize MPI
  
  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options
  
  int numElements = 3;
  vector<vector<double>> domainDim(3,vector<double>{0.0,1.0}); // first index: spaceDim; second: 0/1 for x0, x1, etc.
  int polyOrder = 2, delta_k = 1;
  int spaceDim = 2;
  
  cmdp.setOption("numElements", &numElements );
  cmdp.setOption("polyOrder", &polyOrder );
  cmdp.setOption("delta_k", &delta_k );
  cmdp.setOption("x0", &domainDim[0][0] );
  cmdp.setOption("x1", &domainDim[0][1] );
  cmdp.setOption("y0", &domainDim[1][0] );
  cmdp.setOption("y1", &domainDim[1][1] );
  cmdp.setOption("z0", &domainDim[2][0] );
  cmdp.setOption("z1", &domainDim[2][1] );
  cmdp.setOption("spaceDim", &spaceDim);
  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }
  
  vector<double> x0(spaceDim);
  vector<double> domainSize(spaceDim);
  vector<int> elementCounts(spaceDim);
  for (int d=0; d<spaceDim; d++)
  {
    x0[d] = domainDim[d][0];
    domainSize[d] = domainDim[d][1] - x0[d];
    elementCounts[d] = numElements;
  }
  
  bool conformingTraces = true; // no difference for primal/continuous formulations
  PoissonFormulation formCG(spaceDim, conformingTraces, PoissonFormulation::CONTINUOUS_GALERKIN);
  VarPtr q = formCG.q();
  VarPtr phi = formCG.phi();
  BFPtr bf = formCG.bf();
  
  MeshPtr bubnovMesh = MeshFactory::rectilinearMesh(bf, domainSize, elementCounts, polyOrder, 0, x0);

  // Right now, hanging nodes don't work with continuous field variables
  // there is a GDAMinimumRule test demonstrating the failure, SolvePoisson2DContinuousGalerkinHangingNode.
  // make a mesh with hanging nodes (when spaceDim > 1)
//  {
//    set<GlobalIndexType> cellsToRefine = {0};
//    bubnovMesh->hRefine(cellsToRefine);
//  }

  RHSPtr rhs = RHS::rhs();
  rhs->addTerm(1.0 * q); // unit forcing
  
  IPPtr ip = Teuchos::null; // will give Bubnov-Galerkin
  BCPtr bc = BC::bc();
  bc->addDirichlet(phi, SpatialFilter::allSpace(), Function::zero());
  
  SolutionPtr solution = Solution::solution(bf, bubnovMesh, bc, rhs, ip);
  solution->solve();
  
  HDF5Exporter exporter(bubnovMesh, "PoissonContinuousGalerkin");
  exporter.exportSolution(solution);

  /**** Sort-of-primal experiment ****/
  // an experiment: try doing "primal" DPG with IBP to the boundary
//  ip = IP::ip();
//  ip->addTerm(q->grad());
//  ip->addTerm(q);
//
//  solution = Solution::solution(bf, bubnovMesh, bc, rhs, ip);
//  solution->solve();
//  
//  HDF5Exporter primalNoFluxExporter(bubnovMesh, "PoissonPrimalNoFlux");
//  primalNoFluxExporter.exportSolution(solution);
  
  //*** Primal Formulation ***//
  PoissonFormulation form(spaceDim, conformingTraces, PoissonFormulation::PRIMAL);
  q = form.q();
  phi = form.phi();
  bf = form.bf();
  
  bc = BC::bc();
  bc->addDirichlet(phi, SpatialFilter::allSpace(), Function::zero());
  
  rhs = RHS::rhs();
  rhs->addTerm(1.0 * q); // unit forcing
  
  MeshPtr primalMesh = MeshFactory::rectilinearMesh(bf, domainSize, elementCounts, polyOrder, delta_k, x0);
  
  ip = IP::ip();
  ip->addTerm(q->grad());
  ip->addTerm(q);

  // Right now, hanging nodes don't work with continuous field variables
//.........这里部分代码省略.........
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:PoissonPrimal.cpp

示例7: main

int main(int argc, char *argv[])
{
#ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS
  cout << "NOTE: enabling floating point exceptions for divide by zero.\n";
  _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
  int rank = Teuchos::GlobalMPISession::getRank();

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  const static double PI  = 3.141592653589793238462;

  bool useCondensedSolve = true; // condensed solve not yet compatible with minimum rule meshes

  int k = 2; // poly order for u in every direction, including temporal
  int numCells = 32; // in x, y
  int numTimeCells = 1;
  int numTimeSlabs = -1;
  int numFrames = 201;
  int delta_k = 3;   // test space enrichment: should be 3 for 3D
  int maxRefinements = 0; // maximum # of refinements on each time slab
  bool useMumpsIfAvailable  = true;
  bool useConstantConvection = false;
  double refinementTolerance = 0.1;

  int checkPointFrequency = 50; // output solution and mesh every 50 time slabs

  int previousSolutionTimeSlabNumber = -1;
  string previousSolutionFile = "";
  string previousMeshFile = "";

  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");

  cmdp.setOption("numCells",&numCells,"number of cells in x and y directions");
  cmdp.setOption("numTimeCells",&numTimeCells,"number of time axis cells");
  cmdp.setOption("numTimeSlabs",&numTimeSlabs,"number of time slabs");
  cmdp.setOption("numFrames",&numFrames,"number of frames for export");

  cmdp.setOption("useConstantConvection", "useVariableConvection", &useConstantConvection);

  cmdp.setOption("useCondensedSolve", "useUncondensedSolve", &useCondensedSolve, "use static condensation to reduce the size of the global solve");
  cmdp.setOption("useMumps", "useKLU", &useMumpsIfAvailable, "use MUMPS (if available)");

  cmdp.setOption("refinementTolerance", &refinementTolerance, "relative error beyond which to stop refining");
  cmdp.setOption("maxRefinements", &maxRefinements, "maximum # of refinements on each time slab");

  cmdp.setOption("previousSlabNumber", &previousSolutionTimeSlabNumber, "time slab number of previous solution");
  cmdp.setOption("previousSolution", &previousSolutionFile, "file with previous solution");
  cmdp.setOption("previousMesh", &previousMeshFile, "file with previous mesh");

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  int H1Order = k + 1;

  VarFactory varFactory;
  // traces:
  VarPtr qHat = varFactory.fluxVar("\\widehat{q}");

  // fields:
  VarPtr u = varFactory.fieldVar("u", L2);

  // test functions:
  VarPtr v = varFactory.testVar("v", HGRAD);

  FunctionPtr x = Function::xn(1);
  FunctionPtr y = Function::yn(1);

  FunctionPtr c;
  if (useConstantConvection)
  {
    c = Function::vectorize(Function::constant(0.5), Function::constant(0.5), Function::constant(1.0));
  }
  else
  {
    c = Function::vectorize(y-0.5, 0.5-x, Function::constant(1.0));
  }
  FunctionPtr n = Function::normal();

  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  bf->addTerm( u, c * v->grad());
  bf->addTerm(qHat, v);

  double width = 2.0, height = 2.0;
  int horizontalCells = numCells, verticalCells = numCells;
  int depthCells = numTimeCells;
  double x0 = -0.5;
  double y0 = -0.5;
  double t0 = 0;

  double totalTime = 2.0 * PI;
//.........这里部分代码省略.........
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:SpaceTimePrototypeConvectingConeDriver.cpp

示例8: main

int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);

  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int commRank = Teuchos::GlobalMPISession::getRank();

  Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to.

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  // problem parameters:
  int spaceDim = 2;
  double epsilon = 1e-2;
  int numRefs = 0;
  int k = 2, delta_k = 2;
  int numXElems = 1;
  bool useConformingTraces = true;
  string solverChoice = "KLU";
  string coarseSolverChoice = "KLU"; // often this beats SuperLU_Dist as coarse solver (true on BG/Q with 6000 3D elements on 256 ranks)
  double solverTolerance = 1e-6;
  string norm = "CoupledRobust";
  cmdp.setOption("spaceDim", &spaceDim, "spatial dimension");
  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("numRefs",&numRefs,"number of refinements");
  cmdp.setOption("numXElems",&numXElems,"number of elements in x direction");
  cmdp.setOption("epsilon", &epsilon, "epsilon");
  cmdp.setOption("norm", &norm, "norm");
  cmdp.setOption("conformingTraces", "nonconformingTraces", &useConformingTraces, "use conforming traces");
  cmdp.setOption("coarseSolver", &coarseSolverChoice, "KLU, SuperLU");
  cmdp.setOption("solver", &solverChoice, "KLU, SuperLU, MUMPS, GMG-Direct, GMG-ILU, GMG-IC");
  cmdp.setOption("solverTolerance", &solverTolerance, "iterative solver tolerance");

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  FunctionPtr beta;
  FunctionPtr beta_x = Function::constant(1);
  FunctionPtr beta_y = Function::constant(2);
  FunctionPtr beta_z = Function::constant(3);
  if (spaceDim == 1)
    beta = beta_x;
  else if (spaceDim == 2)
    beta = Function::vectorize(beta_x, beta_y);
  else if (spaceDim == 3)
    beta = Function::vectorize(beta_x, beta_y, beta_z);

  ConvectionDiffusionFormulation form(spaceDim, useConformingTraces, beta, epsilon);

  // Define right hand side
  RHSPtr rhs = RHS::rhs();

  // Set up boundary conditions
  BCPtr bc = BC::bc();
  VarPtr uhat = form.uhat();
  VarPtr tc = form.tc();
  SpatialFilterPtr inflowX = SpatialFilter::matchingX(-1);
  SpatialFilterPtr inflowY = SpatialFilter::matchingY(-1);
  SpatialFilterPtr inflowZ = SpatialFilter::matchingZ(-1);
  SpatialFilterPtr outflowX = SpatialFilter::matchingX(1);
  SpatialFilterPtr outflowY = SpatialFilter::matchingY(1);
  SpatialFilterPtr outflowZ = SpatialFilter::matchingZ(1);
  FunctionPtr zero = Function::zero();
  FunctionPtr one = Function::constant(1);
  FunctionPtr x = Function::xn(1);
  FunctionPtr y = Function::yn(1);
  FunctionPtr z = Function::zn(1);
  if (spaceDim == 1)
  {
    bc->addDirichlet(tc, inflowX, -one);
    bc->addDirichlet(uhat, outflowX, zero);
  }
  if (spaceDim == 2)
  {
    bc->addDirichlet(tc, inflowX, -1*.5*(one-y));
    bc->addDirichlet(uhat, outflowX, zero);
    bc->addDirichlet(tc, inflowY, -2*.5*(one-x));
    bc->addDirichlet(uhat, outflowY, zero);
  }
  if (spaceDim == 3)
  {
    bc->addDirichlet(tc, inflowX, -1*.25*(one-y)*(one-z));
    bc->addDirichlet(uhat, outflowX, zero);
    bc->addDirichlet(tc, inflowY, -2*.25*(one-x)*(one-z));
    bc->addDirichlet(uhat, outflowY, zero);
    bc->addDirichlet(tc, inflowZ, -3*.25*(one-x)*(one-y));
    bc->addDirichlet(uhat, outflowZ, zero);
  }
//.........这里部分代码省略.........
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:TConvectionDiffusion.cpp


注:本文中的SolutionPtr::solve方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。