当前位置: 首页>>代码示例>>C++>>正文


C++ SolutionPtr::addSolution方法代码示例

本文整理汇总了C++中SolutionPtr::addSolution方法的典型用法代码示例。如果您正苦于以下问题:C++ SolutionPtr::addSolution方法的具体用法?C++ SolutionPtr::addSolution怎么用?C++ SolutionPtr::addSolution使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SolutionPtr的用法示例。


在下文中一共展示了SolutionPtr::addSolution方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: main


//.........这里部分代码省略.........
  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////

  Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
  mesh->registerSolution(solution); solution->setCubatureEnrichmentDegree(10);

  ////////////////////////////////////////////////////////////////////
  // HESSIAN BIT + CHECKS ON GRADIENT + HESSIAN
  ////////////////////////////////////////////////////////////////////

  VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL);
  VarPtr du = hessianVars.test(u->ID());
  //  BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form

  FunctionPtr du_current  = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );

  FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,fn));
  LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
  residual->addTerm(fnhat*v,true);
  residual->addTerm( - (e1 * (u_prev_squared_div2) + e2 * (u_prev)) * v->grad(),true);

  LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual
  Bdu->addTerm( - du_current*(beta*v->grad()));

  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu));
  riesz->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz));
  e_v->writeValuesToMATLABFile(mesh, "e_v.m");
  FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx()));
  //  hessianBF->addTerm(e_v->dx()*u,du); 
  //  hessianBF->addTerm(posErrPart*u,du); 
  //  Teuchos::RCP<NullFilter> nullFilter = Teuchos::rcp(new NullFilter);
  //  Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF));

  Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz));

  double NL_residual = 9e99;
  for (int i = 0;i<numSteps;i++){
    // write matrix to file and then resollve without hessian
    /*
    solution->setFilter(hessianFilter);           
    stringstream oss;
    oss << "hessianMatrix" << i << ".dat";
    solution->setWriteMatrixToFile(true,oss.str());      
    solution->solve(false);

    solution->setFilter(nullFilter);
    oss.str(""); // clear
    oss << "stiffnessMatrix" << i << ".dat";
    solution->setWriteMatrixToFile(false,oss.str());      
    */

    solution->solve(false); // do one solve to initialize things...   
    double stepLength = 1.0;
    stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual);

    //      solution->setWriteMatrixToFile(true,"stiffness.dat");    

    backgroundFlow->addSolution(solution,stepLength);
    NL_residual = LS_Step->getNLResidual();
    if (rank==0){
      cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl;    
    }

    double fd_gradient;
    for (int dofIndex = 0;dofIndex<mesh->numGlobalDofs();dofIndex++){
      TestingUtilities::initializeSolnCoeffs(solnPerturbation);
      TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,dofIndex);
      fd_gradient = FiniteDifferenceUtilities::finiteDifferenceGradient(mesh, riesz, backgroundFlow, dofIndex);
      
      // CHECK GRADIENT
      LinearTermPtr b_u =  bf->testFunctional(solnPerturbation);
      map<int,FunctionPtr> NL_err_rep_map;

      NL_err_rep_map[v->ID()] = Teuchos::rcp(new RepFunction(v,riesz));
      FunctionPtr gradient = b_u->evaluate(NL_err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux or trace
      double grad;
      if (TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)){
	grad = gradient->integralOfJump(mesh,10);
      }else{
	grad = gradient->integrate(mesh,10);
      }
      double fdgrad = fd_gradient;
      double diff = grad-fdgrad;
      if (abs(diff)>1e-6 && i>0){
	cout << "Found difference of " << diff << ", " << " with fd val = " << fdgrad << " and gradient = " << grad << " in dof " << dofIndex << ", isTraceDof = " << TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) << endl;
      }
    }
  }
  
  VTKExporter exporter(solution, mesh, varFactory);
  if (rank==0){
    exporter.exportSolution("qopt");
    cout << endl;
  }

  return 0;
}
开发者ID:Kun-Qu,项目名称:Camellia,代码行数:101,代码来源:InviscidBurgersHessian.cpp

示例2: main


//.........这里部分代码省略.........
  ////////////////////////////////////////////////////////////////////
  // INITIALIZE FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );
  SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) );

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt));

  // v terms:
  confusionBF->addTerm( beta * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_hat, v);

  confusionBF->addTerm( u, invDt*v );
  rhs->addTerm( u_prev_time * invDt * v );

  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // robust test norm
  IPPtr ip = confusionBF->graphNorm();
  // IPPtr ip = Teuchos::rcp(new IP);
  // ip->addTerm(v);
  // ip->addTerm(invDt*v - beta*v->grad());

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary(beta) );
  FunctionPtr u0 = Teuchos::rcp( new ConstantScalarFunction(0) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  bc->addDirichlet(beta_n_u_hat, inflowBoundary, beta*n*u0);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow);
  mesh->registerSolution(flowResidual);

  // ==================== SET INITIAL GUESS ==========================
  FunctionPtr u_init = Teuchos::rcp(new InitialCondition());
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()]      = u_init;

  prevTimeFlow->projectOntoMesh(functionMap);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  // if (enforceLocalConservation) {
  //   // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction );
  //   // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) );
  //   LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_minus_sigma_n) );
  //   LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) );
  //   conservedQuantity->addTerm(sourcePart, true);
  //   solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt);
  // }

  int timestepCount = 0;
  double time_tol = 1e-8;
  double L2_time_residual = 1e9;
  while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
  {
    solution->solve(false);
    // Subtract solutions to get residual
    flowResidual->setSolution(solution);
    flowResidual->addSolution(prevTimeFlow, -1.0);
    L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID());

    if (rank == 0)
    {
      cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;

      stringstream outfile;
      outfile << "rotatingCylinder_" << timestepCount;
      solution->writeToVTK(outfile.str(), 5);

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
      FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      source = invDt * source;
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
    timestepCount++;
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:RotatingCylinder.cpp

示例3: main


//.........这里部分代码省略.........

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
  }
  else if (norm == 1)
  {
    // ip = bf->l2Norm();
  }

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr left = Teuchos::rcp( new ConstantXBoundary(-0.5) );
  SpatialFilterPtr right = Teuchos::rcp( new ConstantXBoundary(1) );
  SpatialFilterPtr top = Teuchos::rcp( new ConstantYBoundary(-0.5) );
  SpatialFilterPtr bottom = Teuchos::rcp( new ConstantYBoundary(1.5) );
  bc->addDirichlet(u1hat, left, u1Exact);
  bc->addDirichlet(u2hat, left, u2Exact);
  bc->addDirichlet(u1hat, right, u1Exact);
  bc->addDirichlet(u2hat, right, u2Exact);
  bc->addDirichlet(u1hat, top, u1Exact);
  bc->addDirichlet(u2hat, top, u2Exact);
  bc->addDirichlet(u1hat, bottom, u1Exact);
  bc->addDirichlet(u2hat, bottom, u2Exact);

  // zero mean constraint on pressure
  bc->addZeroMeanConstraint(p);

  // pc->addConstraint(u1hat*u2hat-t1hat == zero, top);
  // pc->addConstraint(u2hat*u2hat-t2hat == zero, top);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  // if (enforceLocalConservation) {
  //   solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y() == zero);
  // }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(backgroundFlow);

  // Teuchos::RCP< RefinementHistory > refHistory = Teuchos::rcp( new RefinementHistory );
  // mesh->registerObserver(refHistory);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(backgroundFlow, mesh, varFactory);
  stringstream outfile;
  outfile << "kovasznay" << "_" << 0;
  exporter.exportSolution(outfile.str());

  double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e10;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve(false);
      double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID());
      double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID());
      L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update);

      // Check local conservation
      if (commRank == 0)
      {
        cout << "L2 Norm of Update = " << L2Update << endl;

        // if (saveFile.length() > 0) {
        //   std::ostringstream oss;
        //   oss << string(saveFile) << refIndex ;
        //   cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl;
        //   refHistory->saveToFile(oss.str());
        // }
      }

      // line search algorithm
      double alpha = 1.0;
      backgroundFlow->addSolution(solution, alpha);
      iterCount++;
    }

    if (commRank == 0)
    {
      stringstream outfile;
      outfile << "kovasznay" << "_" << refIndex+1;
      exporter.exportSolution(outfile.str());
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:PressureKovasznay.cpp

示例4: main


//.........这里部分代码省略.........
    }
    else
    {
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
    }
  }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow); // u_t(i-1)
  mesh->registerSolution(flowResidual); // u_t(i-1)

  double energyThreshold = 0.25; // for mesh refinements
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // PSEUDO-TIME SOLVE STRATEGY 
  ////////////////////////////////////////////////////////////////////

  double time_tol = 1e-8;
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2_time_residual = 1e7;
    int timestepCount = 0;
    if (!transient)
      numTimeSteps = 1;
    while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
    {
      solution->solve(false);
      // subtract solutions to get residual
      flowResidual->setSolution(solution); // reset previous time solution to current time sol
      flowResidual->addSolution(prevTimeFlow, -1.0);       
      double L2u = flowResidual->L2NormOfSolutionGlobal(u->ID());
      double L2sigma1 = flowResidual->L2NormOfSolutionGlobal(sigma1->ID());
      double L2sigma2 = flowResidual->L2NormOfSolutionGlobal(sigma2->ID());
      L2_time_residual = sqrt(L2u*L2u + L2sigma1*L2sigma1 + L2sigma2*L2sigma2);
      cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;    	

      if (rank == 0)
      {
        stringstream outfile;
        if (transient)
          outfile << "TransientConfusion_" << refIndex << "_" << timestepCount;
        else
          outfile << "TransientConfusion_" << refIndex;
        solution->writeToVTK(outfile.str(), 5);
      }

      //////////////////////////////////////////////////////////////////////////
      // Check conservation by testing against one
      //////////////////////////////////////////////////////////////////////////
      VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
      // Create a fake bilinear form for the testing
      BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
      // Define our mass flux
      FunctionPtr flux_current_time = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr delta_u = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      LinearTermPtr surfaceFlux = -1.0 * flux_current_time * testOne;
      LinearTermPtr volumeChange = invDt * delta_u * testOne;
      LinearTermPtr massFluxTerm;
      if (transient)
      {
        massFluxTerm = volumeChange;
        // massFluxTerm->addTerm(surfaceFlux);
开发者ID:Kun-Qu,项目名称:Camellia,代码行数:67,代码来源:TransientConfusion.cpp

示例5: main


//.........这里部分代码省略.........
  //     cout << "after replay, num elems = " << numElems << " and min side length = " << minSideLength << endl;
  //   }
  // }

  for (int i = 0; i < uniformRefinements; i++)
    refinementStrategy.hRefineUniformly(mesh);

  double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e10;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve(false);
      double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID());
      double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID());
      L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update);
      double energy_error = solution->energyErrorTotal();

      // Check local conservation
      if (commRank == 0)
      {
        FunctionPtr n = Function::normal();
        FunctionPtr u1_prev = Function::solution(u1hat, solution);
        FunctionPtr u2_prev = Function::solution(u2hat, solution);
        FunctionPtr flux = u1_prev*n->x() + u2_prev*n->y();
        Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, mesh);
        // cout << "Mass flux: Largest Local = " << fluxImbalances[0]
        //   << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

        errOut << mesh->numGlobalDofs() << " " << energy_error << " "
               << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;

        double massFlux0 = computeFluxOverElementSides(u1_prev, mesh, cellFace0);
        double massFlux1 = computeFluxOverElementSides(u1_prev, mesh, cellFace1);
        double massFlux2 = computeFluxOverElementSides(u1_prev, mesh, cellFace2);
        double massFlux3 = computeFluxOverElementSides(u1_prev, mesh, cellFace3);
        double massFlux4 = computeFluxOverElementSides(u1_prev, mesh, cellFace4);
        fluxOut << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl;
        cout << "Total mass flux = " << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl;

        // if (saveFile.length() > 0) {
        //   std::ostringstream oss;
        //   oss << string(saveFile) << refIndex ;
        //   cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl;
        //   refHistory->saveToFile(oss.str());
        // }
      }

      // line search algorithm
      double alpha = 1.0;
      // bool useLineSearch = false;
      // int posEnrich = 5; // amount of enriching of grid points on which to ensure positivity
      // if (useLineSearch){ // to enforce positivity of density rho
      //   double lineSearchFactor = .5; double eps = .001; // arbitrary
      //   FunctionPtr rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution) - Function::constant(eps);
      //   FunctionPtr eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution) - Function::constant(eps);
      //   bool rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich);
      //   bool eIsPositive = eTemp->isPositive(mesh,posEnrich);
      //   int iter = 0; int maxIter = 20;
      //   while (!(rhoIsPositive && eIsPositive) && iter < maxIter){
      //     alpha = alpha*lineSearchFactor;
      //     rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution);
      //     eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution);
      //     rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich);
      //     eIsPositive = eTemp->isPositive(mesh,posEnrich);
      //     iter++;
      //   }
      //   if (commRank==0 && alpha < 1.0){
      //     cout << "line search factor alpha = " << alpha << endl;
      //   }
      // }

      backgroundFlow->addSolution(solution, alpha, false, true);
      iterCount++;
      // if (commRank == 0)
      //   cout << "L2 Norm of Update = " << L2Update << endl;
    }
    if (commRank == 0)
      cout << endl;

    if (commRank == 0)
    {
      stringstream outfile;
      outfile << "stokeshemker" << uniformRefinements << "_" << refIndex;
      exporter.exportSolution(outfile.str());
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
  {
    errOut.close();
    fluxOut.close();
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:StokesHemker.cpp

示例6: main


//.........这里部分代码省略.........
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow);
  mesh->registerSolution(flowResidual);

  // ==================== SET INITIAL GUESS ==========================
  double u_free = 0.0;
  map<int, Teuchos::RCP<Function> > functionMap;
  // functionMap[u->ID()]      = Teuchos::rcp( new ConInletBC
  functionMap[u->ID()]      = Teuchos::rcp( new InletBC );

  prevTimeFlow->projectOntoMesh(functionMap);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  if (enforceLocalConservation)
  {
    if (steady)
    {
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      solution->lagrangeConstraints()->addConstraint(beta_n_u_hat == zero);
    }
    else
    {
      // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction );
      // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) );
      LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_hat) );
      LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) );
      conservedQuantity->addTerm(sourcePart, true);
      solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt);
    }
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    if (steady)
    {
      solution->solve(false);

      if (commRank == 0)
      {
        stringstream outfile;
        outfile << "Convection_" << refIndex;
        exporter.exportSolution(outfile.str());

        // Check local conservation
        FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
        FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
        Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
        cout << "Mass flux: Largest Local = " << fluxImbalances[0]
             << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
      }
    }
    else
    {
      int timestepCount = 0;
      double time_tol = 1e-8;
      double L2_time_residual = 1e9;
      // cout << L2_time_residual <<" "<< time_tol << timestepCount << numTimeSteps << endl;
      while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
      {
        solution->solve(false);
        // Subtract solutions to get residual
        flowResidual->setSolution(solution);
        flowResidual->addSolution(prevTimeFlow, -1.0);
        L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID());

        if (commRank == 0)
        {
          cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;

          stringstream outfile;
          outfile << "TransientConvection_" << refIndex << "-" << timestepCount;
          exporter.exportSolution(outfile.str());

          // Check local conservation
          FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
          FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
          source = -invDt * source;
          Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh);
          cout << "Mass flux: Largest Local = " << fluxImbalances[0]
               << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
        }

        prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
        timestepCount++;
      }
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }

  return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:SimpleConvection.cpp

示例7: main


//.........这里部分代码省略.........
    mesh->registerSolution(solution);

    ////////////////////////////////////////////////////////////////////
    // WARNING: UNFINISHED HESSIAN BIT
    ////////////////////////////////////////////////////////////////////
    VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL);
    VarPtr du = hessianVars.test(u->ID());
    BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form
    //  FunctionPtr e_v = Function::constant(1.0); // dummy error rep function for now - should do nothing

    FunctionPtr u_current  = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );

    FunctionPtr sig1_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) );
    FunctionPtr sig2_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) );
    FunctionPtr sig_prev = (e1*sig1_prev + e2*sig2_prev);
    FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,beta_n_u_minus_sigma_hat));
    FunctionPtr uhat_prev = Teuchos::rcp(new PreviousSolutionFunction(solution,uhat));
    LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
    residual->addTerm(fnhat*v - (e1 * (u_prev_squared_div2 - sig1_prev) + e2 * (u_prev - sig2_prev)) * v->grad());
    residual->addTerm((1/epsilon)*sig_prev * tau + u_prev * tau->div() - uhat_prev*tau->dot_normal());

    LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual
    Bdu->addTerm( u_current*tau->div() - u_current*(beta*v->grad()));

    Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
    Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu));
    riesz->computeRieszRep();
    FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz));
    e_v->writeValuesToMATLABFile(mesh, "e_v.m");
    FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx()));
    hessianBF->addTerm(e_v->dx()*u,du);
    //  hessianBF->addTerm(posErrPart*u,du);
    Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF));

    if (useHessian)
    {
        solution->setWriteMatrixToFile(true,"hessianStiffness.dat");
    }
    else
    {
        solution->setWriteMatrixToFile(true,"stiffness.dat");
    }

    Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz));
    ofstream out;
    out.open("Burgers.txt");
    double NL_residual = 9e99;
    for (int i = 0; i<numSteps; i++)
    {
        solution->solve(false); // do one solve to initialize things...
        double stepLength = 1.0;
        stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual);
        if (useHessian)
        {
            solution->setFilter(hessianFilter);
        }
        backgroundFlow->addSolution(solution,stepLength);
        NL_residual = LS_Step->getNLResidual();
        if (rank==0)
        {
            cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl;
            out << NL_residual << endl; // saves initial NL error
        }
    }
    out.close();


    ////////////////////////////////////////////////////////////////////
    // DEFINE REFINEMENT STRATEGY
    ////////////////////////////////////////////////////////////////////
    Teuchos::RCP<RefinementStrategy> refinementStrategy;
    refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

    int numRefs = 0;

    Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize));
    Teuchos::RCP<NonlinearSolveStrategy> solveStrategy;
    solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize,
                                  nonlinearRelativeEnergyTolerance));

    ////////////////////////////////////////////////////////////////////
    // SOLVE
    ////////////////////////////////////////////////////////////////////

    for (int refIndex=0; refIndex<numRefs; refIndex++)
    {
        solveStrategy->solve(rank==0);       // print to console on rank 0
        refinementStrategy->refine(rank==0); // print to console on rank 0
    }
    //  solveStrategy->solve(rank==0);

    if (rank==0)
    {
        backgroundFlow->writeToVTK("Burgers.vtu",min(H1Order+1,4));
        solution->writeFluxesToFile(uhat->ID(), "burgers.dat");
        cout << "wrote solution files" << endl;
    }

    return 0;
}
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:101,代码来源:NewBurgersDriver.cpp

示例8: main


//.........这里部分代码省略.........

  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
  mesh->registerSolution(solution);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(fhat == zero);
  }

  ////////////////////////////////////////////////////////////////////
  // DEFINE REFINEMENT STRATEGY
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // SOLVE
  ////////////////////////////////////////////////////////////////////

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e7;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve();
      L2Update = solution->L2NormOfSolutionGlobal(u->ID());
      cout << "L2 Norm of Update = " << L2Update << endl;
      // backgroundFlow->clear();
      backgroundFlow->addSolution(solution, newtonStepSize);
      iterCount++;
    }
    cout << endl;

    // check conservation
    VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
    // Create a fake bilinear form for the testing
    BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
    // Define our mass flux
    FunctionPtr massFlux = Teuchos::rcp( new PreviousSolutionFunction(solution, fhat) );
    LinearTermPtr massFluxTerm = massFlux * testOne;

    Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
    DofOrderingFactory dofOrderingFactory(fakeBF);
    int fakeTestOrder = H1Order;
    DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

    int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
    vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
    map<int, double> massFluxIntegral; // cellID -> integral
    double maxMassFluxIntegral = 0.0;
    double totalMassFlux = 0.0;
    double totalAbsMassFlux = 0.0;
    for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++)
    {
      ElementTypePtr elemType = *elemTypeIt;
      vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
      vector<int> cellIDs;
      for (int i=0; i<elems.size(); i++)
      {
        cellIDs.push_back(elems[i]->cellID());
      }
开发者ID:CamelliaDPG,项目名称:Camellia,代码行数:67,代码来源:InviscidBurgers.cpp


注:本文中的SolutionPtr::addSolution方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。