本文整理汇总了C++中SolutionPtr::reportTimings方法的典型用法代码示例。如果您正苦于以下问题:C++ SolutionPtr::reportTimings方法的具体用法?C++ SolutionPtr::reportTimings怎么用?C++ SolutionPtr::reportTimings使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SolutionPtr
的用法示例。
在下文中一共展示了SolutionPtr::reportTimings方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
BCPtr zeroBCs = bc->copyImposingZero();
gmgSolver = new GMGSolver(zeroBCs, k0Mesh, graphNorm, mesh, solution->getDofInterpreter(),
solution->getPartitionMap(), maxIters, tol, coarseSolver,
useStaticCondensation);
gmgSolver->setAztecOutput(AztecOutputLevel);
gmgSolver->setUseConjugateGradient(true);
gmgSolver->gmgOperator()->setSmootherType(GMGOperator::IFPACK_ADDITIVE_SCHWARZ);
gmgSolver->gmgOperator()->setSmootherOverlap(smootherOverlap);
fineSolver = Teuchos::rcp( gmgSolver );
}
else
{
fineSolver = coarseSolver;
}
// if (rank==0) cout << "experimentally starting by solving with MUMPS on the fine mesh.\n";
// solution->solve( Teuchos::rcp( new MumpsSolver) );
solution->solve(fineSolver);
#ifdef HAVE_EPETRAEXT_HDF5
ostringstream dir_name;
dir_name << "poissonCavityFlow_k" << k;
HDF5Exporter exporter(mesh,dir_name.str());
exporter.exportSolution(solution,varFactory,0);
#endif
#ifdef HAVE_AMESOS_MUMPS
if (useMumps) coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) );
#endif
solution->reportTimings();
if (useGMGSolver) gmgSolver->gmgOperator()->reportTimings();
for (int refIndex=0; refIndex < refCount; refIndex++)
{
double energyError = solution->energyErrorTotal();
GlobalIndexType numFluxDofs = mesh->numFluxDofs();
if (rank==0)
{
cout << "Before refinement " << refIndex << ", energy error = " << energyError;
cout << " (using " << numFluxDofs << " trace degrees of freedom)." << endl;
}
bool printToConsole = printRefinementDetails && (rank==0);
refinementStrategy.refine(printToConsole);
if (useStaticCondensation)
{
CondensedDofInterpreter* condensedDofInterpreter = dynamic_cast<CondensedDofInterpreter*>(solution->getDofInterpreter().get());
if (condensedDofInterpreter != NULL)
{
condensedDofInterpreter->reinitialize();
}
}
GlobalIndexType fineDofs = mesh->globalDofCount();
GlobalIndexType coarseDofs = k0Mesh->globalDofCount();
if (rank==0)
{
cout << "After refinement, coarse mesh has " << k0Mesh->numActiveElements() << " elements and " << coarseDofs << " dofs.\n";
cout << " Fine mesh has " << mesh->numActiveElements() << " elements and " << fineDofs << " dofs.\n";
}
if (!use3D)
{
示例2: main
//.........这里部分代码省略.........
soln = Solution::solution(mesh, bc, RHS::rhs(), ip);
soln->setUseCondensedSolve(useCondensedSolve);
for(int timeSlab = startingSlabNumber; timeSlab<numTimeSlabs; timeSlab++)
{
double energyThreshold = 0.2; // for mesh refinements: ask to refine elements that account for 80% of the error in each step
Teuchos::RCP<RefinementStrategy> refinementStrategy;
refinementStrategy = Teuchos::rcp( new RefinementStrategy( soln, energyThreshold ));
FunctionPtr u_spacetime = Function::solution(u, soln);
double relativeEnergyError;
int refNumber = 0;
// {
// // DEBUGGING: just to try running the time slicing:
// double t_slab_final = (timeStep+1) * timeLengthPerSlab;
// int frameOrdinal = lastFrameOutputted + 1;
// while (frameTimes[frameOrdinal] < t_slab_final) {
// FunctionPtr u_spacetime = Function::solution(u, soln);
// ostringstream dir_name;
// dir_name << "spacetime_slice_convectingCone_k" << k;
// MeshTools::timeSliceExport(dir_name.str(), mesh, u_spacetime, frameTimes[frameOrdinal], "u_slice");
//
// cout << "Exported frame " << frameOrdinal << ", t=" << frameTimes[frameOrdinal] << endl;
// frameOrdinal++;
// }
// }
do
{
soln->solve(solver);
soln->reportTimings();
#ifdef HAVE_EPETRAEXT_HDF5
ostringstream dir_name;
dir_name << "spacetime_convectingCone_k" << k << "_t" << timeSlab;
HDF5Exporter exporter(soln->mesh(),dir_name.str());
exporter.exportSolution(soln, varFactory);
if (rank==0) cout << "Exported HDF solution for time slab to directory " << dir_name.str() << endl;
// string u_name = "u_spacetime";
// exporter.exportFunction(u_spacetime, u_name);
ostringstream file_name;
file_name << dir_name.str();
bool saveSolutionAndMeshForThisSlab = ((timeSlab + 1) % checkPointFrequency == 0); // +1 so that first output is nth, not first
if (saveSolutionAndMeshForThisSlab)
{
dir_name << ".soln";
soln->saveToHDF5(dir_name.str());
if (rank==0) cout << endl << "wrote " << dir_name.str() << endl;
file_name << ".mesh";
soln->mesh()->saveToHDF5(file_name.str());
}
#endif
FunctionPtr u_soln = Function::solution(u, soln);
double solnNorm = u_soln->l2norm(mesh);
double energyError = soln->energyErrorTotal();
relativeEnergyError = energyError / solnNorm;