当前位置: 首页>>代码示例>>C++>>正文


C++ SkVector::rotateCCW方法代码示例

本文整理汇总了C++中SkVector::rotateCCW方法的典型用法代码示例。如果您正苦于以下问题:C++ SkVector::rotateCCW方法的具体用法?C++ SkVector::rotateCCW怎么用?C++ SkVector::rotateCCW使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SkVector的用法示例。


在下文中一共展示了SkVector::rotateCCW方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: quad_to

void SkPathStroker::quad_to(const SkPoint pts[3],
                      const SkVector& normalAB, const SkVector& unitNormalAB,
                      SkVector* normalBC, SkVector* unitNormalBC,
                      int subDivide) {
    if (!set_normal_unitnormal(pts[1], pts[2], fRadius,
                               normalBC, unitNormalBC)) {
        // pts[1] nearly equals pts[2], so just draw a line to pts[2]
        this->line_to(pts[2], normalAB);
        *normalBC = normalAB;
        *unitNormalBC = unitNormalAB;
        return;
    }

    if (--subDivide >= 0 && normals_too_curvy(unitNormalAB, *unitNormalBC)) {
        SkPoint     tmp[5];
        SkVector    norm, unit;

        SkChopQuadAtHalf(pts, tmp);
        this->quad_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit, subDivide);
        this->quad_to(&tmp[2], norm, unit, normalBC, unitNormalBC, subDivide);
    } else {
        SkVector    normalB;

        normalB = pts[2] - pts[0];
        normalB.rotateCCW();
        SkScalar dot = SkPoint::DotProduct(unitNormalAB, *unitNormalBC);
        SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
                                     SkScalarSqrt((SK_Scalar1 + dot)/2))));

        fOuter.quadTo(  pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
                        pts[2].fX + normalBC->fX, pts[2].fY + normalBC->fY);
        fInner.quadTo(  pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
                        pts[2].fX - normalBC->fX, pts[2].fY - normalBC->fY);
    }
}
开发者ID:IllusionRom-deprecated,项目名称:android_platform_external_chromium_org_third_party_skia_src,代码行数:35,代码来源:SkStroke.cpp

示例2: cubic_to

void SkPathStroker::cubic_to(const SkPoint pts[4],
                      const SkVector& normalAB, const SkVector& unitNormalAB,
                      SkVector* normalCD, SkVector* unitNormalCD,
                      int subDivide) {
    SkVector    ab = pts[1] - pts[0];
    SkVector    cd = pts[3] - pts[2];
    SkVector    normalBC, unitNormalBC;

    bool    degenerateAB = degenerate_vector(ab);
    bool    degenerateCD = degenerate_vector(cd);

    if (degenerateAB && degenerateCD) {
DRAW_LINE:
        this->line_to(pts[3], normalAB);
        *normalCD = normalAB;
        *unitNormalCD = unitNormalAB;
        return;
    }

    if (degenerateAB) {
        ab = pts[2] - pts[0];
        degenerateAB = degenerate_vector(ab);
    }
    if (degenerateCD) {
        cd = pts[3] - pts[1];
        degenerateCD = degenerate_vector(cd);
    }
    if (degenerateAB || degenerateCD) {
        goto DRAW_LINE;
    }
    SkAssertResult(set_normal_unitnormal(cd, fRadius, normalCD, unitNormalCD));
    bool degenerateBC = !set_normal_unitnormal(pts[1], pts[2], fRadius,
                                               &normalBC, &unitNormalBC);

    if (degenerateBC || normals_too_curvy(unitNormalAB, unitNormalBC) ||
             normals_too_curvy(unitNormalBC, *unitNormalCD)) {
        // subdivide if we can
        if (--subDivide < 0) {
            goto DRAW_LINE;
        }
        SkPoint     tmp[7];
        SkVector    norm, unit, dummy, unitDummy;

        SkChopCubicAtHalf(pts, tmp);
        this->cubic_to(&tmp[0], normalAB, unitNormalAB, &norm, &unit,
                       subDivide);
        // we use dummys since we already have a valid (and more accurate)
        // normals for CD
        this->cubic_to(&tmp[3], norm, unit, &dummy, &unitDummy, subDivide);
    } else {
        SkVector    normalB, normalC;
        
        // need normals to inset/outset the off-curve pts B and C

        if (0) {    // this is normal to the line between our adjacent pts
            normalB = pts[2] - pts[0];
            normalB.rotateCCW();
            SkAssertResult(normalB.setLength(fRadius));

            normalC = pts[3] - pts[1];
            normalC.rotateCCW();
            SkAssertResult(normalC.setLength(fRadius));
        } else {    // miter-join
            SkVector    unitBC = pts[2] - pts[1];
            unitBC.normalize();
            unitBC.rotateCCW();

            normalB = unitNormalAB + unitBC;
            normalC = *unitNormalCD + unitBC;

            SkScalar dot = SkPoint::DotProduct(unitNormalAB, unitBC);
            SkAssertResult(normalB.setLength(SkScalarDiv(fRadius,
                                        SkScalarSqrt((SK_Scalar1 + dot)/2))));
            dot = SkPoint::DotProduct(*unitNormalCD, unitBC);
            SkAssertResult(normalC.setLength(SkScalarDiv(fRadius,
                                        SkScalarSqrt((SK_Scalar1 + dot)/2))));
        }

        fOuter.cubicTo( pts[1].fX + normalB.fX, pts[1].fY + normalB.fY,
                        pts[2].fX + normalC.fX, pts[2].fY + normalC.fY,
                        pts[3].fX + normalCD->fX, pts[3].fY + normalCD->fY);

        fInner.cubicTo( pts[1].fX - normalB.fX, pts[1].fY - normalB.fY,
                        pts[2].fX - normalC.fX, pts[2].fY - normalC.fY,
                        pts[3].fX - normalCD->fX, pts[3].fY - normalCD->fY);
    }
}
开发者ID:0omega,项目名称:platform_external_skia,代码行数:87,代码来源:SkStroke.cpp

示例3: Perterb

static void Perterb(SkPoint* p, const SkVector& tangent, SkScalar scale) {
    SkVector normal = tangent;
    normal.rotateCCW();
    normal.setLength(scale);
    *p += normal;
}
开发者ID:Crawping,项目名称:chromium_extract,代码行数:6,代码来源:SkDiscretePathEffect.cpp


注:本文中的SkVector::rotateCCW方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。