当前位置: 首页>>代码示例>>C++>>正文


C++ SkRect::isFinite方法代码示例

本文整理汇总了C++中SkRect::isFinite方法的典型用法代码示例。如果您正苦于以下问题:C++ SkRect::isFinite方法的具体用法?C++ SkRect::isFinite怎么用?C++ SkRect::isFinite使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在SkRect的用法示例。


在下文中一共展示了SkRect::isFinite方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: draw

void draw(SkCanvas* canvas) {
    SkRect largest = { SK_ScalarMin, SK_ScalarMin, SK_ScalarMax, SK_ScalarMax };
        SkDebugf("largest is finite: %s\n", largest.isFinite() ? "true" : "false");
        SkDebugf("large width %g\n", largest.width());
        SkRect widest = SkRect::MakeWH(largest.width(), largest.height());
        SkDebugf("widest is finite: %s\n", widest.isFinite() ? "true" : "false");
}
开发者ID:HalCanary,项目名称:skia-hc,代码行数:7,代码来源:Rect_isFinite.cpp

示例2: setRectXY

void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
    if (rect.isEmpty() || !rect.isFinite()) {
        this->setEmpty();
        return;
    }

    if (!SkScalarsAreFinite(xRad, yRad)) {
        xRad = yRad = 0;    // devolve into a simple rect
    }
    if (xRad <= 0 || yRad <= 0) {
        // all corners are square in this case
        this->setRect(rect);
        return;
    }

    if (rect.width() < xRad+xRad || rect.height() < yRad+yRad) {
        SkScalar scale = SkMinScalar(rect.width() / (xRad + xRad), rect.height() / (yRad + yRad));
        SkASSERT(scale < SK_Scalar1);
        xRad = SkScalarMul(xRad, scale);
        yRad = SkScalarMul(yRad, scale);
    }

    fRect = rect;
    for (int i = 0; i < 4; ++i) {
        fRadii[i].set(xRad, yRad);
    }
    fType = kSimple_Type;
    if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
        fType = kOval_Type;
        // TODO: assert that all the x&y radii are already W/2 & H/2
    }

    SkDEBUGCODE(this->validate();)
}
开发者ID:Arternis,项目名称:skia,代码行数:34,代码来源:SkRRect.cpp

示例3: setNinePatch

void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
                           SkScalar rightRad, SkScalar bottomRad) {
    if (rect.isEmpty() || !rect.isFinite()) {
        this->setEmpty();
        return;
    }

    const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
    if (!SkScalarsAreFinite(array, 4)) {
        this->setRect(rect);    // devolve into a simple rect
        return;
    }

    leftRad = SkMaxScalar(leftRad, 0);
    topRad = SkMaxScalar(topRad, 0);
    rightRad = SkMaxScalar(rightRad, 0);
    bottomRad = SkMaxScalar(bottomRad, 0);

    SkScalar scale = SK_Scalar1;
    if (leftRad + rightRad > rect.width()) {
        scale = rect.width() / (leftRad + rightRad);
    }
    if (topRad + bottomRad > rect.height()) {
        scale = SkMinScalar(scale, rect.height() / (topRad + bottomRad));
    }

    if (scale < SK_Scalar1) {
        leftRad = SkScalarMul(leftRad, scale);
        topRad = SkScalarMul(topRad, scale);
        rightRad = SkScalarMul(rightRad, scale);
        bottomRad = SkScalarMul(bottomRad, scale);
    }

    if (leftRad == rightRad && topRad == bottomRad) {
        if (leftRad >= SkScalarHalf(rect.width()) && topRad >= SkScalarHalf(rect.height())) {
            fType = kOval_Type;
        } else if (0 == leftRad || 0 == topRad) {
            // If the left and (by equality check above) right radii are zero then it is a rect.
            // Same goes for top/bottom.
            fType = kRect_Type;
            leftRad = 0;
            topRad = 0;
            rightRad = 0;
            bottomRad = 0;
        } else {
            fType = kSimple_Type;
        }
    } else {
        fType = kNinePatch_Type;
    }

    fRect = rect;
    fRadii[kUpperLeft_Corner].set(leftRad, topRad);
    fRadii[kUpperRight_Corner].set(rightRad, topRad);
    fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
    fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);

    SkDEBUGCODE(this->validate();)
}
开发者ID:Arternis,项目名称:skia,代码行数:59,代码来源:SkRRect.cpp

示例4: setRectRadii

void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
    if (rect.isEmpty() || !rect.isFinite()) {
        this->setEmpty();
        return;
    }

    if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
        this->setRect(rect);    // devolve into a simple rect
        return;
    }

    fRect = rect;
    memcpy(fRadii, radii, sizeof(fRadii));

    bool allCornersSquare = true;

    // Clamp negative radii to zero
    for (int i = 0; i < 4; ++i) {
        if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
            // In this case we are being a little fast & loose. Since one of
            // the radii is 0 the corner is square. However, the other radii
            // could still be non-zero and play in the global scale factor
            // computation.
            fRadii[i].fX = 0;
            fRadii[i].fY = 0;
        } else {
            allCornersSquare = false;
        }
    }

    if (allCornersSquare) {
        this->setRect(rect);
        return;
    }

    // Proportionally scale down all radii to fit. Find the minimum ratio
    // of a side and the radii on that side (for all four sides) and use
    // that to scale down _all_ the radii. This algorithm is from the
    // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
    // Curves:
    // "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
    //   Si is the sum of the two corresponding radii of the corners on side i,
    //   and Ltop = Lbottom = the width of the box,
    //   and Lleft = Lright = the height of the box.
    // If f < 1, then all corner radii are reduced by multiplying them by f."
    double scale = 1.0;

    scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, rect.width(),  scale);
    scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, rect.height(), scale);
    scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, rect.width(),  scale);
    scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, rect.height(), scale);

    if (scale < 1.0) {
        for (int i = 0; i < 4; ++i) {
            fRadii[i].fX *= scale;
            fRadii[i].fY *= scale;
        }
    }

    // skbug.com/3239 -- its possible that we can hit the following inconsistency:
    //     rad == bounds.bottom - bounds.top
    //     bounds.bottom - radius < bounds.top
    //     YIKES
    // We need to detect and "fix" this now, otherwise we can have the following wackiness:
    //     path.addRRect(rrect);
    //     rrect.rect() != path.getBounds()
    for (int i = 0; i < 4; ++i) {
        fRadii[i].fX = clamp_radius_check_predicates(fRadii[i].fX, rect.fLeft, rect.fRight);
        fRadii[i].fY = clamp_radius_check_predicates(fRadii[i].fY, rect.fTop, rect.fBottom);
    }
    // At this point we're either oval, simple, or complex (not empty or rect).
    this->computeType();

    SkDEBUGCODE(this->validate();)
}
开发者ID:Arternis,项目名称:skia,代码行数:75,代码来源:SkRRect.cpp


注:本文中的SkRect::isFinite方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。