本文整理汇总了C++中SkRect::isFinite方法的典型用法代码示例。如果您正苦于以下问题:C++ SkRect::isFinite方法的具体用法?C++ SkRect::isFinite怎么用?C++ SkRect::isFinite使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkRect
的用法示例。
在下文中一共展示了SkRect::isFinite方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: draw
void draw(SkCanvas* canvas) {
SkRect largest = { SK_ScalarMin, SK_ScalarMin, SK_ScalarMax, SK_ScalarMax };
SkDebugf("largest is finite: %s\n", largest.isFinite() ? "true" : "false");
SkDebugf("large width %g\n", largest.width());
SkRect widest = SkRect::MakeWH(largest.width(), largest.height());
SkDebugf("widest is finite: %s\n", widest.isFinite() ? "true" : "false");
}
示例2: setRectXY
void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
if (rect.isEmpty() || !rect.isFinite()) {
this->setEmpty();
return;
}
if (!SkScalarsAreFinite(xRad, yRad)) {
xRad = yRad = 0; // devolve into a simple rect
}
if (xRad <= 0 || yRad <= 0) {
// all corners are square in this case
this->setRect(rect);
return;
}
if (rect.width() < xRad+xRad || rect.height() < yRad+yRad) {
SkScalar scale = SkMinScalar(rect.width() / (xRad + xRad), rect.height() / (yRad + yRad));
SkASSERT(scale < SK_Scalar1);
xRad = SkScalarMul(xRad, scale);
yRad = SkScalarMul(yRad, scale);
}
fRect = rect;
for (int i = 0; i < 4; ++i) {
fRadii[i].set(xRad, yRad);
}
fType = kSimple_Type;
if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
fType = kOval_Type;
// TODO: assert that all the x&y radii are already W/2 & H/2
}
SkDEBUGCODE(this->validate();)
}
示例3: setNinePatch
void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
SkScalar rightRad, SkScalar bottomRad) {
if (rect.isEmpty() || !rect.isFinite()) {
this->setEmpty();
return;
}
const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
if (!SkScalarsAreFinite(array, 4)) {
this->setRect(rect); // devolve into a simple rect
return;
}
leftRad = SkMaxScalar(leftRad, 0);
topRad = SkMaxScalar(topRad, 0);
rightRad = SkMaxScalar(rightRad, 0);
bottomRad = SkMaxScalar(bottomRad, 0);
SkScalar scale = SK_Scalar1;
if (leftRad + rightRad > rect.width()) {
scale = rect.width() / (leftRad + rightRad);
}
if (topRad + bottomRad > rect.height()) {
scale = SkMinScalar(scale, rect.height() / (topRad + bottomRad));
}
if (scale < SK_Scalar1) {
leftRad = SkScalarMul(leftRad, scale);
topRad = SkScalarMul(topRad, scale);
rightRad = SkScalarMul(rightRad, scale);
bottomRad = SkScalarMul(bottomRad, scale);
}
if (leftRad == rightRad && topRad == bottomRad) {
if (leftRad >= SkScalarHalf(rect.width()) && topRad >= SkScalarHalf(rect.height())) {
fType = kOval_Type;
} else if (0 == leftRad || 0 == topRad) {
// If the left and (by equality check above) right radii are zero then it is a rect.
// Same goes for top/bottom.
fType = kRect_Type;
leftRad = 0;
topRad = 0;
rightRad = 0;
bottomRad = 0;
} else {
fType = kSimple_Type;
}
} else {
fType = kNinePatch_Type;
}
fRect = rect;
fRadii[kUpperLeft_Corner].set(leftRad, topRad);
fRadii[kUpperRight_Corner].set(rightRad, topRad);
fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);
SkDEBUGCODE(this->validate();)
}
示例4: setRectRadii
void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
if (rect.isEmpty() || !rect.isFinite()) {
this->setEmpty();
return;
}
if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
this->setRect(rect); // devolve into a simple rect
return;
}
fRect = rect;
memcpy(fRadii, radii, sizeof(fRadii));
bool allCornersSquare = true;
// Clamp negative radii to zero
for (int i = 0; i < 4; ++i) {
if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
// In this case we are being a little fast & loose. Since one of
// the radii is 0 the corner is square. However, the other radii
// could still be non-zero and play in the global scale factor
// computation.
fRadii[i].fX = 0;
fRadii[i].fY = 0;
} else {
allCornersSquare = false;
}
}
if (allCornersSquare) {
this->setRect(rect);
return;
}
// Proportionally scale down all radii to fit. Find the minimum ratio
// of a side and the radii on that side (for all four sides) and use
// that to scale down _all_ the radii. This algorithm is from the
// W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
// Curves:
// "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
// Si is the sum of the two corresponding radii of the corners on side i,
// and Ltop = Lbottom = the width of the box,
// and Lleft = Lright = the height of the box.
// If f < 1, then all corner radii are reduced by multiplying them by f."
double scale = 1.0;
scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, rect.width(), scale);
scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, rect.height(), scale);
scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, rect.width(), scale);
scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, rect.height(), scale);
if (scale < 1.0) {
for (int i = 0; i < 4; ++i) {
fRadii[i].fX *= scale;
fRadii[i].fY *= scale;
}
}
// skbug.com/3239 -- its possible that we can hit the following inconsistency:
// rad == bounds.bottom - bounds.top
// bounds.bottom - radius < bounds.top
// YIKES
// We need to detect and "fix" this now, otherwise we can have the following wackiness:
// path.addRRect(rrect);
// rrect.rect() != path.getBounds()
for (int i = 0; i < 4; ++i) {
fRadii[i].fX = clamp_radius_check_predicates(fRadii[i].fX, rect.fLeft, rect.fRight);
fRadii[i].fY = clamp_radius_check_predicates(fRadii[i].fY, rect.fTop, rect.fBottom);
}
// At this point we're either oval, simple, or complex (not empty or rect).
this->computeType();
SkDEBUGCODE(this->validate();)
}