本文整理汇总了C++中SkOpSegment::debugID方法的典型用法代码示例。如果您正苦于以下问题:C++ SkOpSegment::debugID方法的具体用法?C++ SkOpSegment::debugID怎么用?C++ SkOpSegment::debugID使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类SkOpSegment
的用法示例。
在下文中一共展示了SkOpSegment::debugID方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: FixWinding
void FixWinding(SkPath* path) {
SkPath::FillType fillType = path->getFillType();
if (fillType == SkPath::kInverseEvenOdd_FillType) {
fillType = SkPath::kInverseWinding_FillType;
} else if (fillType == SkPath::kEvenOdd_FillType) {
fillType = SkPath::kWinding_FillType;
}
SkPathPriv::FirstDirection dir;
if (one_contour(*path) && SkPathPriv::CheapComputeFirstDirection(*path, &dir)) {
if (dir != SkPathPriv::kCCW_FirstDirection) {
SkPath temp;
temp.reverseAddPath(*path);
*path = temp;
}
path->setFillType(fillType);
return;
}
SkChunkAlloc allocator(4096);
SkOpContourHead contourHead;
SkOpGlobalState globalState(nullptr, &contourHead SkDEBUGPARAMS(nullptr));
SkOpEdgeBuilder builder(*path, &contourHead, &allocator, &globalState);
builder.finish(&allocator);
SkASSERT(contourHead.next());
contourHead.resetReverse();
bool writePath = false;
SkOpSpan* topSpan;
globalState.setPhase(SkOpGlobalState::kFixWinding);
while ((topSpan = FindSortableTop(&contourHead))) {
SkOpSegment* topSegment = topSpan->segment();
SkOpContour* topContour = topSegment->contour();
SkASSERT(topContour->isCcw() >= 0);
#if DEBUG_WINDING
SkDebugf("%s id=%d nested=%d ccw=%d\n", __FUNCTION__,
topSegment->debugID(), globalState.nested(), topContour->isCcw());
#endif
if ((globalState.nested() & 1) != SkToBool(topContour->isCcw())) {
topContour->setReverse();
writePath = true;
}
topContour->markDone();
globalState.clearNested();
}
if (!writePath) {
path->setFillType(fillType);
return;
}
SkPath empty;
SkPathWriter woundPath(empty);
SkOpContour* test = &contourHead;
do {
if (test->reversed()) {
test->toReversePath(&woundPath);
} else {
test->toPath(&woundPath);
}
} while ((test = test->next()));
*path = *woundPath.nativePath();
path->setFillType(fillType);
}
示例2: bridgeXor
// returns true if all edges were processed
static bool bridgeXor(SkTDArray<SkOpContour*>& contourList, SkPathWriter* simple) {
SkOpSegment* current;
int start, end;
bool unsortable = false;
bool closable = true;
while ((current = FindUndone(contourList, &start, &end))) {
do {
#if DEBUG_ACTIVE_SPANS
if (!unsortable && current->done()) {
DebugShowActiveSpans(contourList);
}
#endif
SkASSERT(unsortable || !current->done());
int nextStart = start;
int nextEnd = end;
SkOpSegment* next = current->findNextXor(&nextStart, &nextEnd, &unsortable);
if (!next) {
if (!unsortable && simple->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple->isClosed()) {
current->addCurveTo(start, end, simple, true);
SkASSERT(simple->isClosed());
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY,
current->xyAtT(end).fX, current->xyAtT(end).fY);
#endif
current->addCurveTo(start, end, simple, true);
current = next;
start = nextStart;
end = nextEnd;
} while (!simple->isClosed() && (!unsortable || !current->done(SkMin32(start, end))));
if (!simple->isClosed()) {
SkASSERT(unsortable);
int min = SkMin32(start, end);
if (!current->done(min)) {
current->addCurveTo(start, end, simple, true);
current->markDone(min, 1);
}
closable = false;
}
simple->close();
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
}
return closable;
}
示例3: FindChase
SkOpSegment* FindChase(SkTDArray<SkOpSpan*>* chase, int* tIndex, int* endIndex) {
while (chase->count()) {
SkOpSpan* span;
chase->pop(&span);
const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
SkOpSegment* segment = backPtr.fOther;
*tIndex = backPtr.fOtherIndex;
bool sortable = true;
bool done = true;
*endIndex = -1;
if (const SkOpAngle* last = segment->activeAngle(*tIndex, tIndex, endIndex, &done,
&sortable)) {
*tIndex = last->start();
*endIndex = last->end();
#if TRY_ROTATE
*chase->insert(0) = span;
#else
*chase->append() = span;
#endif
return last->segment();
}
if (done) {
continue;
}
if (!sortable) {
continue;
}
// find first angle, initialize winding to computed fWindSum
const SkOpAngle* angle = segment->spanToAngle(*tIndex, *endIndex);
const SkOpAngle* firstAngle;
SkDEBUGCODE(firstAngle = angle);
SkDEBUGCODE(bool loop = false);
int winding;
do {
angle = angle->next();
SkASSERT(angle != firstAngle || !loop);
SkDEBUGCODE(loop |= angle == firstAngle);
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
int spanWinding = segment->spanSign(angle->start(), angle->end());
#if DEBUG_WINDING
SkDebugf("%s winding=%d spanWinding=%d\n", __FUNCTION__, winding, spanWinding);
#endif
// turn span winding into contour winding
if (spanWinding * winding < 0) {
winding += spanWinding;
}
// we care about first sign and whether wind sum indicates this
// edge is inside or outside. Maybe need to pass span winding
// or first winding or something into this function?
// advance to first undone angle, then return it and winding
// (to set whether edges are active or not)
firstAngle = angle;
winding -= firstAngle->segment()->spanSign(firstAngle);
while ((angle = angle->next()) != firstAngle) {
segment = angle->segment();
int maxWinding = winding;
winding -= segment->spanSign(angle);
#if DEBUG_SORT
SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
segment->debugID(), maxWinding, winding, angle->sign());
#endif
*tIndex = angle->start();
*endIndex = angle->end();
int lesser = SkMin32(*tIndex, *endIndex);
const SkOpSpan& nextSpan = segment->span(lesser);
if (!nextSpan.fDone) {
// FIXME: this be wrong? assign startWinding if edge is in
// same direction. If the direction is opposite, winding to
// assign is flipped sign or +/- 1?
if (SkOpSegment::UseInnerWinding(maxWinding, winding)) {
maxWinding = winding;
}
(void) segment->markAndChaseWinding(angle, maxWinding, 0);
break;
}
}
*chase->insert(0) = span;
return segment;
}
return NULL;
}
示例4: bridgeOp
static bool bridgeOp(SkTArray<SkOpContour*, true>& contourList, const SkPathOp op,
const int xorMask, const int xorOpMask, SkPathWriter* simple) {
bool firstContour = true;
bool unsortable = false;
bool topUnsortable = false;
SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
do {
int index, endIndex;
bool done;
SkOpSegment* current = FindSortableTop(contourList, SkOpAngle::kBinarySingle, &firstContour,
&index, &endIndex, &topLeft, &topUnsortable, &done);
if (!current) {
if (topUnsortable || !done) {
topUnsortable = false;
SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
topLeft.fX = topLeft.fY = SK_ScalarMin;
continue;
}
break;
}
SkTDArray<SkOpSpan*> chaseArray;
do {
if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) {
do {
if (!unsortable && current->done()) {
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
if (simple->isEmpty()) {
simple->init();
}
break;
}
SkASSERT(unsortable || !current->done());
int nextStart = index;
int nextEnd = endIndex;
SkOpSegment* next = current->findNextOp(&chaseArray, &nextStart, &nextEnd,
&unsortable, op, xorMask, xorOpMask);
if (!next) {
if (!unsortable && simple->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple->isClosed()) {
current->addCurveTo(index, endIndex, simple, true);
SkASSERT(simple->isClosed());
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
#endif
current->addCurveTo(index, endIndex, simple, true);
current = next;
index = nextStart;
endIndex = nextEnd;
} while (!simple->isClosed() && (!unsortable
|| !current->done(SkMin32(index, endIndex))));
if (current->activeWinding(index, endIndex) && !simple->isClosed()) {
// FIXME : add to simplify, xor cpaths
int min = SkMin32(index, endIndex);
if (!unsortable && !simple->isEmpty()) {
unsortable = current->checkSmall(min);
}
SkASSERT(unsortable || simple->isEmpty());
if (!current->done(min)) {
current->addCurveTo(index, endIndex, simple, true);
current->markDoneBinary(min);
}
}
simple->close();
} else {
SkOpSpan* last = current->markAndChaseDoneBinary(index, endIndex);
if (last && !last->fLoop) {
*chaseArray.append() = last;
}
}
current = findChaseOp(chaseArray, index, endIndex);
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
if (!current) {
break;
}
} while (true);
} while (true);
return simple->someAssemblyRequired();
}
示例5: bridgeOp
static bool bridgeOp(SkTArray<SkOpContour*, true>& contourList, const SkPathOp op,
const int xorMask, const int xorOpMask, SkPathWriter* simple) {
bool firstContour = true;
bool unsortable = false;
bool topUnsortable = false;
bool firstPass = true;
SkPoint lastTopLeft;
SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
do {
int index, endIndex;
bool topDone;
bool onlyVertical = false;
lastTopLeft = topLeft;
SkOpSegment* current = FindSortableTop(contourList, SkOpAngle::kBinarySingle, &firstContour,
&index, &endIndex, &topLeft, &topUnsortable, &topDone, &onlyVertical, firstPass);
if (!current) {
if ((!topUnsortable || firstPass) && !topDone) {
SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
if (lastTopLeft.fX == SK_ScalarMin && lastTopLeft.fY == SK_ScalarMin) {
if (firstPass) {
firstPass = false;
} else {
break;
}
}
topLeft.fX = topLeft.fY = SK_ScalarMin;
continue;
}
break;
} else if (onlyVertical) {
break;
}
firstPass = !topUnsortable || lastTopLeft != topLeft;
SkTDArray<SkOpSpan*> chase;
do {
if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) {
do {
if (!unsortable && current->done()) {
break;
}
SkASSERT(unsortable || !current->done());
int nextStart = index;
int nextEnd = endIndex;
SkOpSegment* next = current->findNextOp(&chase, &nextStart, &nextEnd,
&unsortable, op, xorMask, xorOpMask);
if (!next) {
if (!unsortable && simple->hasMove()
&& current->verb() != SkPath::kLine_Verb
&& !simple->isClosed()) {
current->addCurveTo(index, endIndex, simple, true);
#if DEBUG_ACTIVE_SPANS
if (!simple->isClosed()) {
DebugShowActiveSpans(contourList);
}
#endif
// SkASSERT(simple->isClosed());
}
break;
}
#if DEBUG_FLOW
SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
#endif
current->addCurveTo(index, endIndex, simple, true);
current = next;
index = nextStart;
endIndex = nextEnd;
} while (!simple->isClosed() && (!unsortable
|| !current->done(SkMin32(index, endIndex))));
if (current->activeWinding(index, endIndex) && !simple->isClosed()) {
// FIXME : add to simplify, xor cpaths
int min = SkMin32(index, endIndex);
if (!unsortable && !simple->isEmpty()) {
unsortable = current->checkSmall(min);
}
if (!current->done(min)) {
current->addCurveTo(index, endIndex, simple, true);
current->markDoneBinary(min);
}
}
simple->close();
} else {
SkOpSpan* last = current->markAndChaseDoneBinary(index, endIndex);
if (last && !last->fChased && !last->fLoop) {
last->fChased = true;
SkASSERT(!SkPathOpsDebug::ChaseContains(chase, last));
*chase.append() = last;
#if DEBUG_WINDING
SkDebugf("%s chase.append id=%d windSum=%d small=%d\n", __FUNCTION__,
last->fOther->span(last->fOtherIndex).fOther->debugID(), last->fWindSum,
last->fSmall);
#endif
}
}
current = findChaseOp(chase, &index, &endIndex);
#if DEBUG_ACTIVE_SPANS
DebugShowActiveSpans(contourList);
#endif
if (!current) {
//.........这里部分代码省略.........
示例6: FindChase
SkOpSegment* FindChase(SkTDArray<SkOpSpan*>& chase, int& tIndex, int& endIndex) {
while (chase.count()) {
SkOpSpan* span;
chase.pop(&span);
const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
SkOpSegment* segment = backPtr.fOther;
tIndex = backPtr.fOtherIndex;
SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle, true> angles;
int done = 0;
if (segment->activeAngle(tIndex, &done, &angles)) {
SkOpAngle* last = angles.end() - 1;
tIndex = last->start();
endIndex = last->end();
#if TRY_ROTATE
*chase.insert(0) = span;
#else
*chase.append() = span;
#endif
return last->segment();
}
if (done == angles.count()) {
continue;
}
SkSTArray<SkOpAngle::kStackBasedCount, SkOpAngle*, true> sorted;
bool sortable = SkOpSegment::SortAngles(angles, &sorted,
SkOpSegment::kMayBeUnordered_SortAngleKind);
int angleCount = sorted.count();
#if DEBUG_SORT
sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
#endif
if (!sortable) {
continue;
}
// find first angle, initialize winding to computed fWindSum
int firstIndex = -1;
const SkOpAngle* angle;
int winding;
do {
angle = sorted[++firstIndex];
segment = angle->segment();
winding = segment->windSum(angle);
} while (winding == SK_MinS32);
int spanWinding = segment->spanSign(angle->start(), angle->end());
#if DEBUG_WINDING
SkDebugf("%s winding=%d spanWinding=%d\n",
__FUNCTION__, winding, spanWinding);
#endif
// turn span winding into contour winding
if (spanWinding * winding < 0) {
winding += spanWinding;
}
#if DEBUG_SORT
segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0);
#endif
// we care about first sign and whether wind sum indicates this
// edge is inside or outside. Maybe need to pass span winding
// or first winding or something into this function?
// advance to first undone angle, then return it and winding
// (to set whether edges are active or not)
int nextIndex = firstIndex + 1;
int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
angle = sorted[firstIndex];
winding -= angle->segment()->spanSign(angle);
do {
SkASSERT(nextIndex != firstIndex);
if (nextIndex == angleCount) {
nextIndex = 0;
}
angle = sorted[nextIndex];
segment = angle->segment();
int maxWinding = winding;
winding -= segment->spanSign(angle);
#if DEBUG_SORT
SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
segment->debugID(), maxWinding, winding, angle->sign());
#endif
tIndex = angle->start();
endIndex = angle->end();
int lesser = SkMin32(tIndex, endIndex);
const SkOpSpan& nextSpan = segment->span(lesser);
if (!nextSpan.fDone) {
// FIXME: this be wrong? assign startWinding if edge is in
// same direction. If the direction is opposite, winding to
// assign is flipped sign or +/- 1?
if (SkOpSegment::UseInnerWinding(maxWinding, winding)) {
maxWinding = winding;
}
segment->markAndChaseWinding(angle, maxWinding, 0);
break;
}
} while (++nextIndex != lastIndex);
*chase.insert(0) = span;
return segment;
}
return NULL;
}
示例7: FindSortableTop
SkOpSegment* FindSortableTop(const SkTArray<SkOpContour*, true>& contourList,
SkOpAngle::IncludeType angleIncludeType, bool* firstContour, int* indexPtr,
int* endIndexPtr, SkPoint* topLeft, bool* unsortable, bool* done, bool* onlyVertical,
bool firstPass) {
SkOpSegment* current = findTopSegment(contourList, indexPtr, endIndexPtr, topLeft, unsortable,
done, firstPass);
if (!current) {
return NULL;
}
const int startIndex = *indexPtr;
const int endIndex = *endIndexPtr;
if (*firstContour) {
current->initWinding(startIndex, endIndex, angleIncludeType);
*firstContour = false;
return current;
}
int minIndex = SkMin32(startIndex, endIndex);
int sumWinding = current->windSum(minIndex);
if (sumWinding == SK_MinS32) {
int index = endIndex;
int oIndex = startIndex;
do {
const SkOpSpan& span = current->span(index);
if ((oIndex < index ? span.fFromAngle : span.fToAngle) == NULL) {
current->addSimpleAngle(index);
}
sumWinding = current->computeSum(oIndex, index, angleIncludeType);
SkTSwap(index, oIndex);
} while (sumWinding == SK_MinS32 && index == startIndex);
}
if (sumWinding != SK_MinS32 && sumWinding != SK_NaN32) {
return current;
}
int contourWinding;
int oppContourWinding = 0;
// the simple upward projection of the unresolved points hit unsortable angles
// shoot rays at right angles to the segment to find its winding, ignoring angle cases
bool tryAgain;
double tHit;
SkScalar hitDx = 0;
SkScalar hitOppDx = 0;
// keep track of subsequent returns to detect infinite loops
SkTDArray<SortableTop> sortableTops;
do {
// if current is vertical, find another candidate which is not
// if only remaining candidates are vertical, then they can be marked done
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
skipVertical(contourList, ¤t, indexPtr, endIndexPtr);
SkASSERT(current); // FIXME: if null, all remaining are vertical
SkASSERT(*indexPtr != *endIndexPtr && *indexPtr >= 0 && *endIndexPtr >= 0);
tryAgain = false;
contourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitDx, &tryAgain, onlyVertical, false);
if (tryAgain) {
bool giveUp = false;
int count = sortableTops.count();
for (int index = 0; index < count; ++index) {
const SortableTop& prev = sortableTops[index];
if (giveUp) {
prev.fSegment->markDoneFinal(prev.fIndex);
} else if (prev.fSegment == current
&& (prev.fIndex == *indexPtr || prev.fEndIndex == *endIndexPtr)) {
// remaining edges are non-vertical and cannot have their winding computed
// mark them as done and return, and hope that assembly can fill the holes
giveUp = true;
index = -1;
}
}
if (giveUp) {
*done = true;
return NULL;
}
}
SortableTop* sortableTop = sortableTops.append();
sortableTop->fSegment = current;
sortableTop->fIndex = *indexPtr;
sortableTop->fEndIndex = *endIndexPtr;
#if DEBUG_SORT
SkDebugf("%s current=%d index=%d endIndex=%d tHit=%1.9g hitDx=%1.9g try=%d vert=%d\n",
__FUNCTION__, current->debugID(), *indexPtr, *endIndexPtr, tHit, hitDx, tryAgain,
*onlyVertical);
#endif
if (*onlyVertical) {
return current;
}
if (tryAgain) {
continue;
}
if (angleIncludeType < SkOpAngle::kBinarySingle) {
break;
}
oppContourWinding = rightAngleWinding(contourList, ¤t, indexPtr, endIndexPtr, &tHit,
&hitOppDx, &tryAgain, NULL, true);
} while (tryAgain);
bool success = current->initWinding(*indexPtr, *endIndexPtr, tHit, contourWinding, hitDx,
oppContourWinding, hitOppDx);
if (current->done()) {
return NULL;
} else if (!success) { // check if the span has a valid winding
int min = SkTMin(*indexPtr, *endIndexPtr);
//.........这里部分代码省略.........